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DONET (Dense Oceanfloor Network system for Earthquakes 
and Tsunamis) has been developed and installed around Nankai 
Trough, which is motivated by the 2004 Sumatra-Andaman 
Earthquake. DONET contains pressure gauges as well as 
seismometers, which are expected to detect crustal deformations 
driven by peeling off subduction plate coupling process. From 
our simulation results, leveling changes are different sense among 
the DONET points even in the same science node. On the other 
hand, oceanic fluctuations such as melting ice masses through the 
global warming have so large scale as to cause ocean bottom 
pressure change coherently for all of DONET points especially in 
the same node. This difference suggests the possibility of 
extracting crustal deformations component from ocean bottom 
pressure data by differential of stacking data. However, this 
operation cannot be applied to local-scale fluctuations related to 
ocean mesoscale eddies and current fluctuations, which affect 
ocean bottom pressure through water density changes in the 
water column (from the sea surface to the bottom). Therefore, we 
need integral analysis by combining seismology, ocean physics 
and tsunami engineering so as to decompose into crustal 
deformation, oceanic fluctuations and instrumental drift, which 
will bring about high precision data enough to find geophysical 
phenomena. 
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I.  INTRODUCTION 
  It has been well known that megathrust earthquakes such 

as the 2004 Sumatra-Andaman Earthquake (Mw 9.1) and the 
2011 Pacific Coast of Tohoku Earthquake (Mw 9.0) had 
devastated the coastal areas in the western of Indonesia and the 
north-eastern of Japan, respectively. Some researchers have 
pointed out that the 2011 Tohoku earthquake may correspond 
to the recurrence of the 869 Jogan earthquake [1]. These may 
indicate that megathrust earthquakes like the Nin’na 
earthquake might occur along the Nankai Trough in the near 
future [2]. After the 2004 Sumatra-Andaman Earthquake, 
nearby megathrust earthquakes such as the 2005 Northern 
Sumatra Earthquake (Mw 8.6 and the 2007 Southern Sumatra 
Earthquake (Mw 8.5) followed so as to cover the seismic gap. 
This means that megathrust earthquakes nearby the 2011 
Tohoku Earthquake may occur off Ibaraki and/or Iwate 
prefectures. 
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To mitigate the disaster of those forthcoming megathrust 
earthquakes such as Tonankai earthquake and Tohoku 
earthquake, the Japanese government has established seafloor 
networks of cable-linked observatories around Japan: DONET 
(Dense Oceanfloor Network system for Earthquakes and 
Tsunamis along the Nankai Trough) and S-net (Seafloor 
Observation Network for Earthquakes and Tsunamis along the 
Japan Trench). The advantage of the cable-linked network is to 
monitor the propagation process of tsunami and seismic waves 
as well as seismic activity in real time [3]. 

  So far, we estimate the plate coupling in the shallower part 
of subduction zones on the basis of Very Low Frequency 
Earthquake (VLFE) activity detected by seismometers. If the 
VLFEs can be detected by hydraulic pressure gauges on the 
seafloor, the reliability of our plate coupling estimation will be 
more robust. In the next section, we investigate the 
detectability of shallow VLFEs by the DONET in Tonankai 
district. 

In this study, we try to extract crustal deformations from 
ocean bottom pressure data in order to detect the process of 
peeling off subduction plate coupling on the basis of simulation 
studies [2] and observations [4]. 

II. STRATEGY TO EXTRACT CRUSTAL DEFORMATIONS 
COMPONENT FROM OCEAN BOTTOM PRESSURE DATA 

As Ariyoshi et al. [2] suggested, the differential data is 
useful to detect the local leveling change just in one 
observation point, if the leveling change averaged in the same 
node is nearly zero due to different sense of the change. 
However, the condition that the averaged leveling change due 
to VLFEs is nearly zero seems to be practically much limited. 

Moreover, most of crustal deformation such as Slow Slip 
Event (SSE) [5] is not so local, which means that the 
differential data may miss the wide-area deformation. Since the 
activity of Low Frequency Tremors (LFTs) and VLFEs is 
thought to be related with SSE [6], the monitoring of VLFE 
activity should detect both the local and wide-area changes. 
This means that we have to develop the data analysis of 
seafloor hydraulic pressure gauge from the differential data. 

Since the hydraulic pressure on the seafloor is expressed as 
integration of weight density dependent on temperature and 
salinity from the ocean surface to the bottom, the raw data of 
the pressure gauge is composed of crustal deformation and 
oceanic current fluctuation in addition to instrumental drift [7]. 

 

 
Figure 1. Overview of DONET and Long-term Borehole Observatory [3]. 
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Figure 2. Significant currents are schematically shown by arrows; large-meandering (LM), offshore and nearshore nonlarge-meandering (NLM) paths of the 

Kuroshio are indicated by dashed and dotted curves, respectively. Locations of IES (inverted echo sounder) sites and Tosa-Shimizu tide gauge station are indicated 
by black stars and an open inverted triangle, respectively. Four blue regions along the Nankai Trough represent the estimated source regions of (in order from east to 
west) Tokai, Tonankai, Nankai and Hyuganada earthquakes, respectively. Dusky-red and orange colored closed circles represent DONET-I and DONET-II, 
respectively. This figure is adapted and modified from Nagano et al. [8]. 

 

Fig. 2 shows significant surface currents in the region off 
the southern coast of Japan. This figure suggests that the 
change of the hydraulic pressure at DONET is affected by the 
Kuroshio, because sea surface height and the vertical 
distributions of temperature and salinity are perturbed by the 
path variation of the Kuroshio [8]. In addition, because 
temperature in the Kuroshio region is considered to be more 
sensitive to long-term climate change than that in Oyashio 
region [9], we should monitor climate changes such as on El 
Niño-Souther Oscillation (ENSO) and longer time scales [10]. 

To estimate the crustal deformation more precisely, we 
have to evaluate all of the components (crustal deformation, 
ocean fluctuations, instrumental drift) quantitatively. Since 
ocean bottom pressure data is affected by weight density in the 
range from ocean bottom to over the sea surface, we need 
integral analysis by combining seismology, ocean physics and 
tsunami engineering. Concretely, seismologists use repeating 
earthquakes reflecting on plate motion along directions parallel 
and/or normal to the oceanic trench [11,12], geodesists use 
Global Navigation Satellite System (GNSS) data to estimate 

vector of slip driven by megathrust earthquakes [13,14], and 
ocean physicians estimate the depth profile of salinity and 
temperature of sea water [8,10]. 

Compared with seismological and ocean physical 
phenomena, the spatial and time scales of mesoscale eddies 
[15] and current variability [16] is largely the same as those of 
crustal deformations driven by slow-earthquakes [2]. These 
spatial scales are about 50-100 km, which is detectable by 
DONET because of spatial interval is about 15-20 km. This 
means that we have to know the different characteristics of 
ocean bottom pressure change between the crustal 
deformations and the oceanic variation. 

On the crustal deformation, pressure change is expected to 
be so local as to be different sense even in the same science 
node because of short distance from the source region of slow 
earthquake and the observation point of DONET. From 
numerical simulation study [2], we can extract the crustal 
deformations by differential of stacked data in each science 
node. Because of static displacement on the subduction fault, 
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the crustal deformations basically contains static change 
component. 

On the oceanic variation, ocean current change does not 
contain the static component because it is basically temporal. 
In addition, characteristics of bottom pressure variation by 
current change are not the same as path of slow earthquake 
migration [5,6,8]. These differences may be a clue to separate 
crustal deformations and ocean fluctuations. 

III. STRATEGY TO EXTRACT CRUSTAL DEFORMATIONS 
COMPONENT FROM OCEAN BOTTOM PRESSURE DATA 

Fig. 3 shows the concept of our integral study plan from the 
view of available data. In addition, tsunami engineers try to 
reduce drift component by operating environmental laboratory 
experiments under the condition of the installed seafloor [17]. 
The combination of these evaluations brings about win-win 
results for all of various researchers and technicians. 

Fig. 4 shows overview of our plan to analyze ocean bottom 
pressure at DONET by integral study of seismology, geodesy, 

ocean technology and meteorology. Repeating earthquake 
analysis [11,12] and tilt estimated by accelerometers [6] help 
us to detect crustal deformation in addition to leveling change 
at seafloor. In summary, it is important for us to integrate the 
analysis of hydraulic pressure data by collaborating between 
seismologist, geologist, meteorologist and tsunami engineer in 
order to extract crustal deformation as well as oceanic change 
with removal of the instrumental drift. This collaboration will 
bring about more robust data for both the two geo-signal 
components, which reveals the crustal deformation near the 
trench due to VLFEs and oceanic warming significantly. 
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Figure 3. Concept of our integral study plan from the view of available data. ADCP is “Acoustic Doppler Current Profiler”. ARGO Float (Project) is “A Global 

Array for Temperature/Salinity Profiling Floats”. TRITON (buoy) is “TRIangle Trans-Ocean buoy”. CTD is “Conductivity Temperature Depth profiler”. XCTD is 
“eXpendable CTD”.
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Figure 4. Overview of integral study in order to extract crustal deformation component of hydraulic pressure change 
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