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Introduction

The supporting information includes four texts, one table, and eleven figures:

1. Text S1 provides details of the repeating-earthquake data selection criteria.

2. Text S2 provides details of the Mann-Kendall test.

3. Text S3 describes the different models of repeating-earthquake recurrence and provides

details of the Marcov-chain Monte Carlo procedure and the results of model section.
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4. Text S4 provides details of the joint GPS/repeating-earthquake inversion for slip acceler-

ation, including details about estimating correlations in GPS station accelerations and model

regularization.

5. Table S1 summarizes the result of the Mann-Kendall test.

6. Figure S1 shows the epicentral distribution of families of repeating earthquakes used in

this study, highlighting those that passed our selection criteria.

7. Figure S2 summarizes statistics of the families of repeating earthquakes in terms of num-

ber of events per family and average recurrence interval, and shows that the majority of families

have less than 4 events.

8. Figure S3 demonstrates that the percentage of families that passed the Mann-Kendall test

at 95% confidence is high enough to be considered statistically significant at 95% confidence

(based on the binomial distribution). The same is true for separate groups of sequences in the

north and south.

9. Figure S4 shows that the coefficient of variation (COV) in recurrence interval of the

repeating-earthquake sequences is on average 0.4, with only 4 sequences having COV < 0.1;

i.e., exhibiting near-regular recurrence.

10. Figure S5 shows that the pattern of accelerating recurrence in the south and decelerating

recurrence in the north inferred from the Mann-Kendall (MK) test at 95% confidence is consis-

tent with the result of the MK test at 90% confidence (panel a) as well as the Spearman’s rank

correlation coefficient between recurrence interval and time (panel b).
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11. Figure S6 compares the fits of three different models of repeating-earthquake recurrence

to the observed variation between reucrrence interval and seismic moment, and shows that the

Beeler model captures the weak variation for small moments better than the other two models.

12. Figure S7 shows the predicted cumulative slip histories in the repeating-earthquake se-

quences that passed the Mann-Kendall test and demonstrates that for most sequences modeled

afterslip is negligible compared to the total slip.

13. Figure S8 shows a map of cumulative modeled afterslip, after Johnson et al. [2013].

14. Figure S9 shows probability density functions of slip accelerations from the repeating-

earthquake sequences that passed the Mann-Kendall test (as in Figure 4a, but with each distri-

bution shown in a separate panel).

15. Figure S10 shows the estimated slip acceleration, corrected for afterslip, at the locations

of all repeating-earthquake sequences,including those that failed the Mann-Kendall test and

demonstrates that we still observe a pattern of mostly negative slip accelerations in the north

and positive in the south, albeit with more variability.

16. Figure S11 compares the distributions of slip acceleration on the plate interface inferred

from three different regularization schemes in the joint GPS/repeating-earthquake inversion and

demonstrates that the minimum-norm and second-order Tikhonov regularization schemes result

in artifacts due to inclusion of point constraints from the repeating earthquakes, whereas the

local Laplacian regularization yields a more physical distribution.

17. Figure S12 demonstrates the effect of changing the radius involved in the local Laplacian

smoothing in the joint GPS/repeating-earthquake inversion.
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Text S1.

The original catalog of repeating earthquakes from Uchida and Matsuzawa [2013] contains

1515 sequences (Figure S1). We select sequences that satisfy the following criteria:

1. Sequences with at least 4 events in the time period 1996/03/21 to 2011/02/06; i.e., the

minimum number required to observe a monotonic change in recurrence interval.

2. Sequences whose events have average magnitude of M 3 or larger. If a sequence missed

an event smaller than the detection threshold, the sequence would be corrupted. While the

completeness threshold in the catalog is M 2.5, we are conservative and choose a minimum of

M 3.

3. Sequences whose events have low variation in magnitude; we use a threshold in the stan-

dard deviation of the magnitudes of 0.3 units. If a sequences truly reflects repeating rupture of

the same source area, then the magnitudes within the sequences should not vary significantly.

4. Sequences that span a relatively long time within the 15-year period of interest (i.e., “per-

sistent” sequences, as in Satriano et al. [2014]). This avoids clusters of repeating events that

are short-lived and thus likely to represent rapid slip transients. Specifically, our criterion is

that each sequence must satisfy the condition 10 ≤ NT ≤ 30 yr, where N is the number of

events in the sequence during the period of interest and T is the average recurrence interval in

the sequence (Figure S2).
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Text S2.

There are at least two non-parametric statistical tests for detecting monotonic trends in noisy

time series data: the Mann-Kendall (MK) test [Mann, 1945; Kendall, 1948] and the Spearman’s

rho test [Lehmann and D’Abrera, 2006]. The MK test has been commonly used in detecting

trends in hydro-meteorological time series [e.g., Yue et al., 2002]. Simulations demonstrate that

the two tests have similar power in detecting a trend, to the point of being indistinguishable in

practice [Yue et al., 2002]. In general, passing the MK test (at a predefined confidence level) is

a function of three factors: the number of samples, the scatter in the data, and the magnitude of

the trend.

The MK test is based on the test statistic S defined as

S =
n−1∑
i=1

n∑
j=i+1

sgn(xj − xi) (S1)

where the xj are the sequential data values in a time series, n is the number of samples, and sgn is

the signum function. In our case, xj are the recurrence intervals in a given sequence of repeating

earthquakes in the time period 1996/03/21 to 2011/02/06. The statistic S is approximately

normally distributed with mean and variance given by E[S] = 0 and

Var[S] =
n(n− 1)(2n+ 5)

18
, (S2)

respectively [Mann, 1945; Kendall, 1948]. In the case of ties (xi = xj), a correction to the vari-

ance is needed; however, no ties exist in sequences of repeating earthquakes. The standardized

test statistic Z is given by

Z =


S − 1√
Var[S]

if S > 0

0 if S = 0
S + 1√
Var[S]

if S < 0

(S3)

D R A F T November 4, 2015, 4:14pm D R A F T



X - 6 MAVROMMATIS ET AL.: ACCELERATED SLIP PRECEDING M9 EARTHQUAKE

and follows the standard normal distribution, Z ∼ N (0, 1). The P -value of the MK statistic

can be estimated by

p = 1− Φ(|Z|), (S4)

where Φ(|Z|) is the normal cumulative distribution function of |Z|. If the P -value is small

enough, the trend is unlikely to be caused by chance. A robust estimate of the (signed) magni-

tude of the monotonic trend is given by Sen [1968] as

β = Median
(
xj − xl
j − l

)
∀ l < j. (S5)

Table S1 lists the sequences of repeating earthquakes that pass the MK test for significant

trend in recurrence interval at 95% confidence. 4 sequences have β > 0 (upward trend in

recurrence interval) and 12 sequences have β < 0 (downward trend in recurrence interval).

Note that the 9 sequences with only 4 events that pass the test have a relatively strong trend,

while the sequences with more than 4 events have generally weaker (but still significant) trends.

Specifically, the average trend magnitude is 〈|β|〉 = 1.7 for sequences with 4 events, whereas

〈|β|〉 = 0.3 for sequences with more than 4 events.
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Text S3.

Standard model

The first model we consider represents each repeating earthquake as rupture on a circular

crack of fixed radius r that undergoes uniform stress drop ∆τ in an elastic full-space. The model

assumes that all slip at the location of the repeating earthquake is accumulated seismically.

Using the definition of seismic moment, M0 = πµsr2, where s is the average (seismic) slip and

µ is the shear modulus, one can derive the following relationship between recurrence interval,

T , and seismic moment:

T =
∆τ 2/3M

1/3
0

1.81µVL
, (S6)

[Nadeau and Johnson, 1998; Beeler et al., 2001]. However, the T ∝ M
1/3
0 scaling predicted

from this model is inconsistent with observations from northeastern Japan [Chen et al., 2007]

as well as the San Andreas Fault, California [Nadeau and Johnson, 1998; Beeler et al., 2001;

Chen and Lapusta, 2009].

Nadeau-Johnson model

The second model we consider is based on the empirical scaling relationship of Nadeau and

Johnson [1998], who found that T ∝ M0.17
0 from repeating earthquakes on the Parkfield seg-

ment of the San Andreas Fault. The scaling relationship can be written as

log T = α logM0 + β (S7)

where α and β are empirically derived constants, with α = 0.17. While this relationship has

been applied to repeating earthquakes outside of Parkfield, Chen et al. [2007] showed that only

after accounting for the differences in regional loading rates did the scaling become consistent

with data from Taiwan and NE Japan. Here we follow Chen et al. [2007] and adjust the Nadeau-
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Johnson scaling to make it applicable for NE Japan by normalizing the Parkfield recurrence

interval by the ratio of the Parkfield loading rate, VParkfield = 2.3 cm/yr [Nadeau and Johnson,

1998], to the NE Japan loading rate, VL, as follows:

T norm
Parkfield =

VL
VParkfield

TParkfield. (S8)

Therefore, the adjusted Nadeau-Johnson scaling that can be used for NE Japan data is

log T = α logM0 +

(
log

VParkfield

VL
+ β

)
. (S9)

However, assuming no aseismic slip, the Nadeau-Johnson predicts extremely high stress drops

(∼2500 MPa) for the smallest repeating earthquakes in order to fit the observed recurrence

intervals [Nadeau and Johnson, 1998], contrary to subsequent estimates of stress drops of small

repeating earthquakes which lie within the typical range of 1 to 10 MPa [Imanishi et al., 2004;

Allmann and Shearer, 2007].

Beeler model

Beeler et al. [2001] developed an alternative model that allows for aseismic slip as part of

the cumulative slip that is accommodated at the source location of a repeating earthquake. The

model is based on a spring slider governed by a strain-hardening constitutive law. Because of

the strain-hardening property, part of the accumulated slip during each cycle is aseismic, and

the ratio of aseismic to total slip is larger for smaller events. The resulting scaling of recurrence

time with seismic moment has a trend that is consistent with observations both from the San

Andreas Fault [Beeler et al., 2001] and NE Japan [Igarashi et al., 2003]. In addition, the high

proportion of aseismic slip in the smaller events results in much more reasonable stress drops

compared to the Nadeau-Johnson model [Beeler et al., 2001]. The effect of higher proportion

of aseismic slip in smaller events was later supported by numerical simulations using rate-and-
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state friction [Chen and Lapusta, 2009]. In the Beeler model, which is the third and final model

that we consider, recurrence interval is related to seismic moment by

T =
∆τ

VL

[
1

1.81µ

(
M0

∆τ

)1/3

+
1

C

]
, (S10)

where ∆τ is the stress drop and C is the strain-hardening coefficient, which controls the ratio

of aseismic to total slip [Beeler et al., 2001].

Model selection

We fit each of the three models (equations (S6), (S9), and (S10), respectively) to all 76

individual observations of T (M0) (one for each sequence of repeating earthquakes) using a

Markov-chain Monte Carlo (MCMC) method. We assume a value for the shear modulus equal

to µ = 3 × 1010 Pa. The standard model (equation (S6)) has two unknown parameters: load-

ing velocity, VL, and stress drop, ∆τ . The Nadeau-Johnson model (equation (S9)) has three

unknowns, VL, α, and β, the latter two being the slope and intercept in the original Nadeau-

Johnson model, respectively. Finally, the Beeler model (equation (S10)) has three unknown

parameters, VL, ∆τ , and C, the strain-hardening coefficient. We use uniform priors for all un-

known parameters, except for the Nadeau-Johnson constants, for which we use Gaussian priors

with means and standard errors taken from the values given in Nadeau and Johnson [1998].

Additionally, we bound VL between 0 and 8.3 cm/yr, the long-term plate convergence rate in

NE Japan [DeMets et al., 2010].

Figure S6 shows the results of fitting the three models to the observations of T (M0). The

standard model, having a slope of 1
3

in logarithmic space, is inconsistent with the observed

weak variation between T and M0, as pointed out by other studies [Beeler et al., 2001; Chen

and Lapusta, 2009]. In contrast, both the Nadeau-Johnson and Beeler models fit the observa-
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tions considerably better. We compute Akaike information criterion (AIC) [Akaike, 1974] and

Bayesian information criterion (BIC) [Schwarz, 1978] statistics for each model and find the fol-

lowing: The AIC statistics are 23.1 for the standard model, 19.6 for the Nadeau-Johnson model,

and 18.5 for the Beeler model. The BIC statistics are 18.4 for the standard model, 12.6 for the

Nadeau-Johnson model, and 11.5 for the Beeler model. Therefore, the Nadeau-Johnson and

Beeler models give a significantly better fit to the data compared to the standard model, with

the Beeler model having the lowest values of both BIC and AIC, although not very different

from the Nadeau-Johnson model. We therefore adopt the Beeler model for calculating slip as a

function of moment.
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Text S4.

Inversion setup

We use the same plate interface model as in Mavrommatis et al. [2014] and relate the accel-

erations in GPS time series to slip acceleration on the plate interface as

d = Gm + ε (S11)

where d is a vector of observed GPS station accelerations, m is the (M × 1) vector of unknown

slip acceleration values on M fault patches, G is a matrix of Green’s functions mapping slip

on triangular patches to surface displacements [Meade, 2007], and ε ∼ N (0,Σ) is a random

error vector that follows a normal distribution with zero mean and covariance matrix Σ. A

discussion of how Σ is estimated is provided the subsection “Estimating correlations in GPS

station accelerations”.

We use the GPS station accelerations and the estimates of slip acceleration at the locations of

the repeating earthquakes jointly to estimate the distribution of slip acceleration everywhere on

the megathrust by solving the minimization problem

min
m

[
||Σ−1/2(d−Gm)||22 + ||C−1/2(Hm−m∗)||22 + α2||Dm||22

]
. (S12)

The first term penalizes misfit to the observed GPS station accelerations. The second term pe-

nalizes misfit to the estimates of slip acceleration at the locations of the repeating earthquake

sequences: m∗ is an (Nc × 1) vector of the modes of the slip acceleration PDFs corresponding

to the Nc = 16 patches whose centroids are closest to the locations of the repeating earth-

quakes that passed the MK test, H is an (Nc ×M) index matrix such that its jth column is ek,

k = 1, ..., Nc if j = k and 0 otherwise, where ek is the kth column of the (Nc × Nc) identity

matrix, and C is an (Nc × Nc) diagonal covariance matrix containing the sample variances of
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the PDFs of slip accelerations inferred from the repeating earthquakes. Finally, the last term is

a regularization term that minimizes the variance of m given some operator D (e.g., for mini-

mum norm, D = I and for second-order Tikhonov regularization, D = L, the finite-difference

approximation of the Laplacian operator). A discussion of how D is chosen is provided in the

subsection “Model regularization”. The scalar α2 places a relative weight between fitting the

data (both GPS and repeating earthquakes) versus regularizing the model estimate. The value

of α2 is chosen empirically using a tradeoff curve between the data misfit (first two terms in

equation (S12)), and the model roughness, ||Dm||22.

Estimating correlations in GPS station accelerations

Geodetic data are known to be spatially correlated [Lohman and Simons, 2005]. To estimate

the covariance matrix of the GPS station accelerations, Σ, we compute the spatial autocorrela-

tion function of the residual GPS accelerations, r = d−Gm̂, given a model estimate m̂. We

define the spatial autocorrelation function as the covariance of the residual GPS acceleration be-

tween each station and all stations that are located at some distance away. Assuming the mean

of the residuals is spatially uniform, the autocorrelation as a function of lag distance hk is given

by

C(hk) =
1

Nk

Ns∑
i=1

∑
j∈J (i)

k

(ri − r)(rj − r) (S13)

where r is the sample mean of the residuals, i indexes over all Ns stations, and j indexes the

stations in the set J (i)
k defined as the set of stations whose distance from station i is in the range

set by the kth lag bin; i.e.,

1

2
(hk−1 + hk) ≤ d

(i)
j <

1

2
(hk + hk+1) (S14)

D R A F T November 4, 2015, 4:14pm D R A F T



MAVROMMATIS ET AL.: ACCELERATED SLIP PRECEDING M9 EARTHQUAKE X - 13

where d(i)j is the distance from station i to station j. Finally, Nk is the total number of stations

for the kth lag bin; i.e.,

Nk =
Ns∑
i=1

N
(i)
k (S15)

where N (i)
k is the number of elements in J (i)

k . Assuming spatially uniform variance, we nor-

malize the autocorrelation by the sample variance of the residuals:

Ĉ(hk) =
C(hk)

Var(r)
. (S16)

We model the normalized spatial autocorrelation, Ĉ(hk), as an exponentially decaying function

with a characteristic decay distance hc and unit amplitude (since by definition Ĉ(0) = 1):

Ĉ(h) = exp(−h/hc). (S17)

We then populate the estimated covariance matrix Σ̂ as

Σ̂ij = Var(r) exp(−d(i)j /hc) (S18)

This definition produces a symmetric positive definite matrix with constant diagonal.

We employ an iterative procedure, starting with an initial guess of Σ̂0 = diag(σ2), where σ2

is the vector of formal variances of the GPS station accelerations, derived from the time-series

analysis [Mavrommatis et al., 2014]. After performing the inversion once, we obtain the data

residuals r0, which are then used to obtain a new estimate of the covariance matrix, Σ̂1, accord-

ing to the method described above. We iterate this procedure until convergence. Using the local

Laplacian regularization (see discussion below), we find characteristic correlation distances of

hc = 24 km for the east component and hc = 43 km for the north component.
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Model regularization

Using either minimum-norm or second-order Tikhonov regularization everywhere on the fault

produces solutions that contain artifacts due to the inclusion of the point constraints from the

repeating earthquakes (Figure S11). Instead, we perform a mixed minimum-norm/Tikhonov

regularization, which we refer to as “local Laplacian regularization”, by imposing second-order

Tikhonov regularization on patches that are located within some radius r from each repeating

earthquake and minimum-norm regularization everywhere else. The rationale here is that re-

peating earthquakes reflect slip locally on the fault, which should be spatially smooth, but we

conservatively minimize slip acceleration outside these areas to the lowest amplitude required

to fit the GPS data. This results in a slip distribution that is locally smooth around the repeating

earthquakes (Figure S11c).

Increasing the radius r of the area around each repeating earthquake location for which

Laplacian smoothing is imposed results in overall smoother slip-acceleration distributions (Fig-

ure S12). One can place an upper bound on r based on the area of the fault that consists

of locked asperities. Using the asperity model of Johnson et al. [2013], we assume the to-

tal area covered by asperities, Alock, remains locked throughout the entire 15-year observation

period, hence the area allowed to creep is Acreep = Atot − Aasp, where Atot is the total fault

area. We estimate a conservative upper bound on r by assuming Acreep is distributed over N

disjoint circles, where N = 16 is the number of repeating earthquake sequences that passed

the MK test; i.e., rmax =
√
Acreep/(Nπ). Using this approximation, we find rmax = 49 km.

On the other hand, a lower bound on r can be placed by assuming the average slip rate never

exceeds the plate rate of 8.3 cm/yr [DeMets et al., 2010] in the 15-year observation period
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(since decreasing r results in higher amplitude of slip acceleration). For example, assuming

the plate interface was fully locked at the beginning of the observation period, the average

acceleration so that the plate rate is not exceeded at the end of the observation period (14.6

years) is amax = (8.3 cm/yr)/(14.6 yr) = 5.7 mm/yr2; we find that this bound is satisfied for

all r > 30 km, but using this value as a bound on the maximum, instead of average, accelera-

tion, places a lower bound on r of 52 km (Figure S12). We therefore choose r = 50 km as a

reasonable scenario.
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Table S1. Statistics of sequences of repeating earthquakes that pass the Mann-Kendall test for

significant trend in recurrence interval at 95% confidence.
Number ID Na T b βc P -value

1 387 10 1.41 0.08 0.0165
2 432 9 1.63 0.23 0.0354
3 557 7 2.28 0.18 0.0085
4 569 10 1.51 0.06 0.0165
5 805 7 2.03 −0.36 0.0026
6 890 5 3.04 −1.09 0.0174
7 931 4 3.26 −1.22 0.0367
8 987 9 1.80 −0.12 0.0044
9 992 4 3.85 −1.95 0.0367

10 1042 4 3.60 −0.32 0.0367
11 1099 4 2.99 −0.88 0.0367
12 1165 4 3.07 −1.33 0.0367
13 1227 4 3.28 −1.89 0.0367
14 1409 4 3.96 −2.14 0.0367
15 1411 4 3.81 −3.02 0.0367
16 1475 4 4.32 −2.57 0.0367

a Number of events in sequence

b Average recurrence interval in years

c Magnitude of the trend, given by equation (S5) (dimensionless)
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Figure S1. Epicentral distribution of families of repeating earthquakes. Yellow circles are the epi-

central locations of families from the catalog of Uchida and Matsuzawa [2013] (each family location

is taken as the average location of the earthquakes within that family). Red circles show the selected

families used in this study (see Text S1 for details on selection criteria).
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Figure S2. (a) Distribution of number of events per sequence in the catalog of repeating earthquakes

[Uchida and Matsuzawa, 2013]. (b) Selection of “persistence” thresholds for repeating earthquake

sequences based on each sequence’s number of events, N , and average recurrence interval, T [as in

Satriano et al., 2014]. Green dashed line satisfies NT = 15 yr; dashed black curves are upper and

lower bounds of 30 yr and 10 yr, respectively. Dots correspond to all sequences in the catalog. Only

sequences falling in the bounded region and with N ≥ 4 (red dots) are included in the analysis.
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Figure S3. Test for collective significance of trends in recurrence intervals of repeating earthquake se-

quences. The figure plots the percent of independent 95% significant tests passed that will be equalled

or exceeded by random chance 5% of the time versus the number of independent tests (black curve).

The curve is derived from the binomial distribution. Points above the curve correspond to significance

tests that are also collectively significant; points below the curve correspond to tests that are not collec-

tively significant. The plotted stars correspond to the Mann-Kendall tests for all repeating earthquake

sequences (green), sequences in the north (blue), and sequences in the south (red).
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Figure S4. Coefficients of variation (COV) in the recurrence interval of sequences of repeating

earthquakes. Panels correspond to sequences that either passed (left) or failed (right) the Mann-Kendall

test for significant trends in recurrence interval. Squares correspond to sequences for which COV < 0.1

(near-regular recurrence).
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Figure S5. (a) Result of the Mann-Kendall test for significant trends in recurrence interval at 90%

confidence. Sequences that pass the test and have positive trends in recurrence interval (decelerat-

ing recurrence) are shown in blue; sequences that pass the test and have negative trends (accelerating

recurrence) in red. Sequences that fail the test are shown in grey. (b) Spearman’s rank correlation

coefficient, ρ, between recurrence interval and time for each of the repeating-earthquake sequences. A

value of ρ = 0 indicates that there is no tendency for the recurrence interval to increase or decrease with

time (i.e., no significant trend, implying either regular or Poissonian recurrence). If ρ > 0, recurrence

interval tends to increase monotonically with time (decelerating recurrence) and if ρ < 0, recurrence

interval tends to decrease monotonically with time (accelerating recurrence). The cases ρ = +1 and

ρ = −1 indicate perfect positive and negative monotonic trends, respectively.
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Figure S6. Fits of three different recurrence models to the observed variation between recurrence in-

terval (T ) and seismic moment (M0) of repeating earthquakes: (a) standard model, (b) Nadeau-Johnson

model, (c) Beeler model. Dots plot average recurrence intervals and moments of the 76 sequences of re-

peating earthquakes that passed our selection criteria (sequences that failed the MK test in green, those

that passed in magenta). Background color in each panel corresponds to the density of fitted curves

from an ensemble produced by MCMC sampling. Blue dashed curves are 95% confidence limits. Error

bars indicate average standard deviation in recurrence interval.
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Figure S7. Panels show the ensemble of predicted cumulative slip histories in each sequence that

passed the Mann-Kendall test for significant trend in recurrence interval (blue for sequences with pos-

itive trends in recurrence interval, red for negative). Solid blue and red curves are the means of all

realizations in each ensemble and shaded regions bounded by dashed lines show the region of 95% of

all realizations. (Note that this does not imply that any trajectory through the shaded regions is possible,

such as a straight line. In fact, the vast majority of realizations in each panel exhibit consistent curva-

ture; i.e., change in slip rate.) Modeled cumulative afterslip at the location of each repeating sequence

is shown by the green curves. The locations of the sequences are shown in Figure 1a in the text.
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Figure S8. Map of cumulative modeled afterslip for the time interval 1996–2011 (before the Tohoku-

oki earthquake) from Johnson et al. [2013]. Green circles are locations of the repeating earthquake

sequences that passed the MK test.
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Figure S9. Probability density functions of slip accelerations from the sequences of repeating earth-

quakes that passed the MK test for significant trends in their recurrence intervals (blue for positive

trend, red for negative), corrected for afterslip. The locations of the sequences are shown in Figure 1a

in the text.
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Figure S10. Spatial distribution of estimated slip acceleration on the plate interface, corrected for

afterslip, at the locations of all 76 sequences of repeating earthquakes, including those that failed the

Mann-Kendall test for significant trends in recurrence interval. Panels correspond to lower 95% confi-

dence bounds (left), maximum-likelihood values (center), and upper 95% confidence bounds (right).

D R A F T November 4, 2015, 4:14pm D R A F T



X - 30 MAVROMMATIS ET AL.: ACCELERATED SLIP PRECEDING M9 EARTHQUAKE

a b c

Figure S11. Results of joint GPS/repeating-earthquake inversion using three different regularization

schemes: (a) minimum norm, (b) Laplacian smoothing, and (c) local Laplacian smoothing. Black and

green arrows are observed and predicted accelerations in GPS time series, respectively. Colors (blue

to red) show the magnitude of estimated slip acceleration on the plate interface. Black dots in a and b

are the locations of the repeating earthquake sequences that passed the MK test and colored circles in c

show the magnitude of slip acceleration estimated at those locations.
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a b c

d

Figure S12. Effect of increasing the radius r of the local Laplacian smoothing in the joint

GPS/repeating-earthquake inversion. (a-c) Modeled slip acceleration distributions corresponding to

r = 30 km (a), r = 50 km (b), and r = 70 km (c), respectively. Symbols and colors as in Figure S11c.

Note differences in color scale. (d) Tradeoff between radius of the local Laplacian smoothing (r) and

estimated slip acceleration (maximum in blue, average in red). Vertical dashed line is an approximate

upper bound to the radius based on the area of the plate interface that should remain locked at all times;

horizontal dashed line is an upper bound on the local slip acceleration based on the constraint that slip

rate should never exceed the plate rate.
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