Seismic versus aseismic slip: Probing mechanical properties of the northeast Japan subduction zone

M. Shirzai a,⁎, R. Bürgmann b, N. Uchida c, Y. Hu b, F. Pollitz d, T. Matsuzawa c

a School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
b Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
c Graduate School of Science, Tohoku University, Sendai, Japan
d U.S. Geological Survey, Menlo Park, CA, USA

ARTICLE INFO

Article history:
Received 14 May 2014
Received in revised form 25 August 2014
Accepted 27 August 2014
Available online 25 September 2014
Editor: P. Shearer

Keywords:
postseismic deformation
Tohoku earthquake
rate state friction law

Abstract

Fault slip may involve slow aseismic creep and fast seismic rupture, radiating seismic waves manifested as earthquakes. These two complementary behaviors accommodate the long-term plate convergence of major subduction zones and are attributed to fault frictional properties. It is conventionally assumed that zones capable of seismic rupture on the subduction megathrust are confined to between about 10 to 50 km depth; however, the actual spatiotemporal distribution of fault mechanical parameters remains elusive for most subduction zones. The 2011 Tohoku Mw 9.0 earthquake ruptured with >50 m slip up to the trench, thus challenging this conventional assumption, and provides a unique opportunity to probe the mechanical properties of the Japan subduction zone. Drawing on the inferred distribution of coseismic and postseismic slip, it has recently been suggested that portions of the megathrust are capable of switching between seismic and aseismic behavior. Kinematic models of the coseismic rupture and 15-month postseismic afterslip of this event suggest that the coseismic rupture triggered widespread frictional afterslip with equivalent moment magnitude of 8.17–8.53, in addition to viscoelastic relaxation in the underlying mantle. The identified linear relation between modeled afterslip, slip inferred from repeating earthquakes on the plate interface, and the cumulative number of aftershocks within 15 km distance of the subduction thrust suggests that most aftershocks are a direct result of afterslip. We constrain heterogeneous rate-state friction parameters of the subduction thrust from the computed coseismic stress changes and afterslip response. Our results indicate a variable pattern along dip and strike, characterizing areas down-dip and south of the main rupture zone as having velocity-strengthening properties. In agreement with seismic tomographic models of plate boundary elastic properties and geologic evidence for previous M > 8.5 megathrust earthquakes on this section of the plate boundary, we suggest that the obtained pattern of the frictional properties is characteristic of subducted material and thus persistent in time and space.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Fault slip comprises seismic and aseismic components, which occur on patches with velocity weakening (VW) and velocity strengthening (VS) properties (Dieterich, 1978; Ruina, 1983), respectively. Traditionally, it is thought that VW properties characterize the depth range of 10 to 50 km on subduction zones, governed by material properties, fluid pressure and temperature (Pacheco et al., 1993). However, identifying the actual distribution and temporal evolution of patchworks of VW and VS behavior has proven challenging (Barbot et al., 2009; Perfettini et al., 2010; Shirzai et al., 2013). For instance, portions of a fault that exhibit longer-term VS behavior, undergoing stable creep at low velocities comparable to tectonic rates, may alter their frictional behavior to VW (Noda and Lapusta, 2013; Reinen et al., 1991; Shibazaki et al., 2011) and experience fast dynamic rupture with slip rates of order of 1 m/s due to dynamic weakening effects (Noda and Lapusta, 2013). Moreover, the zones that are effectively locked during the interseismic period may contain patches of VS behavior slipping at low rates, which are held back by surrounding locked VW zones (Bürgmann et al., 2005). It has also been suggested that areas that previously ruptured in M 7–8 ruptures in the northeast Japan subduction zone slipped stably following the Tohoku earthquake (Johnson et al., 2012). Thus identifying the spatial extent and temporal evolution of VW and VS properties on the
off-Tohoku subduction zone is of great importance for studying the mechanics of the megathrust and its seismic potential.

The M_w 9.0 Tohoku earthquake occurred on March 11, 2011 on the megathrust where the Pacific plate subducts west-northwestward under the Okhotsk plate at an average rate of ~ 8 cm/yr (Apel et al., 2006). An important aspect of the rupture models of this event is that slip of ~ 50 m occurred in the shallowest sections of the subduction zone near the Japan trench (Fig. S1), confirmed by repeated bathymetric (Fujiwara et al., 2011) and seismic reflection data showing large offsets up to the trench (Kodaira et al., 2012). This unexpected large shallow slip caused a destructive large tsunami (Simons et al., 2011) and surprised the scientific community and authorities (Sagiya et al., 2011). This extraordinary behavior is rooted in the particular mechanical properties characterizing the zones of VW and VS behavior (Dieterich, 1978; Ruina, 1983).

The co- and postseismic observations of the deformation associated with this event, provide a unique opportunity to study the spatiotemporal distribution of fault mechanical parameters in a seismically active region (Johnson et al., 2012; Ozawa et al., 2012, 2011; Pollitz et al., 2011; Simons et al., 2011). The postseismic deformation, driven by the stress imparted during coseismic rupture (Bürgmann and Dresen, 2008), comprises afterslip on the megathrust, viscoelastic relaxation of the volume surrounding the fault and poroelastic rebound. Here, we investigate Global Positioning System (GPS) time series spanning the first 15 months of the surface deformation following the event (Fig. 1), complemented with direct observation of the creep on the megathrust interface obtained using characteristic repeating earthquakes (CREs) (Uchida and Matsuzawa, 2013). The combination of these two data sets allows us to illuminate the kinematics of the afterslip and probe the spatial distribution of rate-state frictional properties on the subduction plate interface of NE Japan.

2. Data

The co- and postseismic observations of the 3D deformation associated with the Tohoku earthquake are recorded at more than 1000 continuous and campaign GPS stations (Ozawa et al., 2012). The GPS time series are provided by the Geospatial Information Authority of Japan. Here, we focus on the cumulative 3D surface deformation measured during the initial 15-month postseismic period (see Fig. 1 and supplementary movies). The postseismic GPS time series (Ozawa et al., 2012) are characterized by a rapidly decaying pattern seen in postseismic deformation elsewhere (Bürgmann and Dresen, 2008; Hsu et al., 2006; Perfettini and Avouac, 2007). The vertical deformation shows zones of uplift along the Pacific coast, whereas the far coast is characterized by subsidence (Fig. 1a).

We also explore characteristic repeating earthquakes (CREs). The CREs are events on the plate interface that have nearly identical waveforms and that have coincident hypocenters to resolutions of a few 10s of meters (Uchida and Matsuzawa, 2013). Because of these attributes, a time-ordered sequence of repeating events is believed to represent repeated failures of the same small fault patch, loaded by aseismic slip on the surrounding fault surface (Nadeau and Johnson, 1998; Schaff et al., 1998). Events in a group of CREs have recurrence intervals that generally vary in proportion to the inverse of the creep rate on the fault where the repeating earthquakes are located, indicating that they act as creepmeters directly installed on the fault interface. Thus, the location, magnitude and recurrence interval properties of the sequences can be used to infer the spatial and temporal distribution of deep aseismic slip (Nadeau and Johnson, 1998; Schaff et al., 1998). The cumulative slip obtained from post-Tohoku earthquake measurements of CREs (Fig. 1a) indicates no resolvable afterslip within the primary co-seismic rupture area and that the inferred postseismic creep surrounds the coseismic rupture and exhibits a temporal decay similar to that seen in the GPS data (Uchida and Matsuzawa, 2013).

3. Time-dependent afterslip model

To model the postseismic deformation of the first 15 months we consider three scenarios (Fig. 2), assuming the observed deformation resulted from afterslip on the subduction thrust fault buried in an elastic half-space medium and: (a) no viscoelastic relaxation is involved, (b) the viscoelastic relaxation occurs in a layered viscoelastic medium, (c) the viscoelastic relaxation occurs in a 3D layered viscoelastic medium that includes an elastic slab and higher-viscosity mantle below the Pacific-plate lithosphere. In the latter two cases, the optimum contribution
of the viscoelastic relaxation is estimated during the afterslip inversion as described below. Additional viscoelastic relaxation driven by the afterslip is not considered. The viscoelastic parameters of the forward models used for this correction were adopted from those obtained in prior investigations of postseismic deformation of the 2004 Sumatra earthquake (Hu and Wang, 2012; Pollitz et al., 2006), which are consistent with the values found for other large subduction zone events (Wang et al., 2012). The viscoelastic model used in scenario (b) is produced using the Visco1D software (http://earthquake.usgs.gov/research/software#VISCO1D; Pollitz, 1997) and that of scenario (c) is generated using a 3D finite element code developed by Hu et al. (2004).

The plate interface that the afterslip occurs on extends from 10 km to 80 km depth, has variable dip and strike (Fig. S2), and is defined using a combination of several seismic data sets (Hayes et al., 2012). The same geometry is used for modeling the coseismic slip. In the coseismic and afterslip model inversions, the elastic half-space is characterized by a Poisson’s ratio of 0.25 and shear modulus of 30 GPa. To associate the daily time series of surface displacement with the kinematics of the spatiotemporal distribution of the afterslip, we implement a time-dependent inverse modeling scheme (Shirzaei and Bürgmann, 2013). This method consists of two main operators; (1) a robust optimization operator using the L1-norm minimization as a minimum spatial mean error estimator (Marshall and Bethel, 1996), and (2) a linear Kalman filter (LKF) (Grewal and Andrews, 2001) to generate the time series of the afterslip for each triangular dislocation of the fault-interface mesh as a minimum temporal mean square error estimator. These two steps are implemented iteratively (Shirzaei and Walter, 2010). At each time step t, the mathematical relation between surface observation L_t and afterslip S_t is as follows:

$$L_t + v_t = B S_t + \alpha V_F, \quad P_t = \sigma_0^2 \Sigma^{-1}$$

where $L_t = \left[L_1(x_1, y_1), L_2(x_2, y_2), \ldots, L_N(x_N, y_N) \right]^T$ is the time series of the observed surface displacement at n GPS stations with surface locations of (x_i, y_i), $S_t = \left[S_1(o_1, \rho_1), S_2(o_2, \rho_2), \ldots \right]$ is the time series of afterslip at a patch located at (o_m, ρ_m) along strike and dip of the slab (Fig. S2), B is the design matrix that includes Green’s functions relating fault dislocation to the surface displacements, V_F is the contribution from viscoelastic relaxation of the upper mantle and lower crust for scenarios b and c, α is the scaling factor of the viscoelastic deformation, v_t is the vector of observation residuals, Σ_{kk} is the variance covariance matrix of the observations, and σ^2 is the reference variance factor, initially considered to be one (Mikhail, 1976). Before solving for the time-dependent kinematic model of the afterslip, the time series of V_F is obtained through forward modeling using the scenarios shown in Fig. S2, c. The scaling factor (α) of the viscoelastic model deformation is jointly estimated during the slip inversion. Fig. S3 shows the 15-month cumulative 3D surface displacements due to the viscoelastic relaxation associated with scenarios b and c before scaling by their respective α factors. The scaling factor is considered because the chosen values of the viscosity structure used for forward modeling (Hu and Wang, 2012; Pollitz et al., 2006) may not be representative for this study area, thus the factor allows optimizing the initial value of the viscosity and thus the deformation contribution from the viscoelastic model.

To integrate the CRESes into the afterslip inversion, we consider the following equations:

$$S_t^{CRE} + \epsilon_t = S_t, \quad P_t = \sigma_0^2 \Sigma^{-1}$$

where, S_t^{CRE} is the slip obtained from the CRESes, ϵ_t is the vector of observation residuals and P_t is the weight matrix.

To obtain an optimum afterslip model, Eqs. (1) and (2) are solved jointly subject to an objective function, the L1-norm of the observation residuals as follows:

$$\min_{v_t} \left[\left\| \begin{bmatrix} P_t & 0 \\ 0 & P_t \end{bmatrix} \right\|_{1} \right]$$

To reduce the roughness of the slip distribution on the fault plane and avoid unrealistic stress heterogeneities, we minimize the second-order derivative of the afterslip as an additional constraint (e.g., Segall and Harris, 1987).

$$\gamma D S_t = 0$$

where, D is the Laplacian operator and γ is the smoothing factor, which determines the roughness of the optimum creep model. Here, we constrain afterslip to be dip-slip only and apply a zero-slip constraint to the southern and northern edges of the fault mesh.

Following optimizing the afterslip model for all observation times $\{t_1, t_2, \ldots, t_N\}$ and determining the time series of the slip...
Fig. 3. The cumulative afterslip model of the first 15 months associated with the three scenarios. (a) Scenario a, no viscoelastic relaxation is considered. (b) Scenario b, the viscoelastic relaxation resulting from model shown in Figs. 2b and 3a is scaled by a factor of 0.7 ± 0.1. (c) Scenario c, the viscoelastic relaxation resulting from model shown in Fig. 2c and 3b is scaled by a factor of 0.9 ± 0.2. For each scenario the estimated 15-month afterslip moment release and the value of the Chi-square misfit statistic for three components of the GPS observations are provided. The distribution of the aftershocks during this period is shown by cyan dots.

Source: F-net Japan broadband seismograph network.

and the associated variance–covariance for each patch, we apply the LKF to reduce temporal noise. The LKF addresses the problem of estimating the parameters of a linear, stochastic system with measurements that are linear functions of the parameters. Given the time series of slip $\{s_i, ..., s_k\}$ for a patch located at (ω_i, μ_j) and the associated variance of $\{\delta^2 \sigma_i, ..., \delta^2 \sigma_k\}$, according to the original form of the LKF, the system dynamics and measurement models, respectively, are:

$$S_i = \left[V_i \quad 1 \right] \left[t_i - t_{i-1} \quad \frac{t_i - t_{i-1}}{S_{i-1}} \right] + q_{i-1}, \quad q_i \sim N(0, Q)$$

$$S_i = S_i + r_i, \quad r_i \sim N(0, R)$$

where q_i, q and r_i are Gaussian-distributed noise with mean value of 0 and standard deviation of $1/N \sum_{j=1}^{N} \delta_j$ and V_i is the linear slip velocity. A recursive solution for the system of Eqs. (5) is provided by Grewal and Andrews (2001). In the next section, we describe the results of applying this inversion scheme to the 15-month time series of the surface deformation and CRE data.

4. Results

We start with modeling the coseismic rupture using the GPS data. To obtain the coseismic displacements we difference the daily GPS solutions from one day before and one day after the event. Thus, the coseismic signal includes the effect of both the mainshock and an M_w 7.9 aftershock that occurred 30 min later. The inverted coseismic slip model is shown in Fig. S1 and is very similar to rupture models obtained in other studies (Linuma et al., 2012; Ozawa et al., 2012; Pollitz et al., 2011; Simons et al., 2011). The model has a primary high-slip zone with \sim50 m of slip near the trench separated by a zone of negligible slip from a deeper locus at \sim35 km depth.

In the following and to obtain the time-dependent afterslip model explaining the 3D GPS and CRE time series, we test the three scenarios mentioned above and estimate the model misfits as a function of time. Fig. 3 provides the distribution of the cumulative afterslip model for the three scenarios, the associated chi-square reduction and the standard deviation of the misfit to the repeating earthquake data. Fig. S5 shows the time series of the standard deviation of misfits for the 15 months postseismic period. Models developed according to the three scenarios explain the horizontal GPS deformation data well. In scenario b, with a scaling factor of the viscoelastic model contribution $\alpha = 0.7 \pm 0.1$, the standard deviation of the misfit to the GPS vertical components is smaller by a factor of 2–3 than in the others. The scaling factor of the viscoelastic model contribution for scenario c is $\alpha = 0.9 \pm 0.2$. The afterslip model obtained in scenario b yields a somewhat better fit to the repeating earthquakes compared to scenario a, while scenario b and c explain the CRE data equally well (Fig. S5). Here we focus on the afterslip obtained through scenario b and we base the rest of analysis on it.

In the best-fitting afterslip models obtained in scenario b (Fig. 4a, Figs. S4–5 and supplementary movies), the slip occurs primarily down-dip of the coseismic rupture. While the general pattern remains stationary through time (supplementary movie showing the evolution of afterslip), the inverted slip distribution varies along dip and strike of the subduction zone. We find a maximum cumulative afterslip of \sim3.5 m to the north of the coseismic rupture at a depth of 35–50 km. The amplitude of the slip decreases toward the south of the coseismic rupture. Sensitivity tests (Fig. S6) show that using a combination of CREs with 3D GPS data improves the slip resolution and highlights the complementary nature of these data sets. Fig. 4b–d shows that the inverted afterslip model agrees well with the slip measured using CREs, but the CRE data suggest that slip is locally more heterogeneous than is resolvable in the inversion. Within 1σ uncertainty of the model inversion and assuming a shear modulus of 30 GPa in scenario b, the estimated 15-month afterslip reflects a moment release of $2.30 \times 10^{21} - 7.9 \times 10^{21}$ N m equivalent to $M_w = 8.17 - 8.53$, corresponding to 6–20% of the coseismic moment release (see also supplementary movies). This result is comparable to other estimates of the megathrust afterslip moment release during similar time periods for other subduction earthquakes (Hsu et al., 2006; Savage et al., 2007). The seismic moment released by earthquakes $M_w > 4$ detected by F-net (Japan broadband seismograph network) during the same period corresponds to a moment of 2.01×10^{20} N m, so about 96% of the postseismic slip was aseismic.

5. Discussion

The cumulative afterslip model (Fig. 3 and supplement movies) suggests that co- and postseismic slip are complementary and the slight overlap is likely due to the smoothing operator used and inherent resolution limits (Evans and Meade, 2012). To further investigate this complementary nature, we consider the pattern of the Coulomb failure stress change (ΔCFS) induced by the coseismic rupture on the megathrust (see supplementary materials). We find a significant correlation between areas of increased ΔCFS and the zone of afterslip, suggesting that the afterslip is a direct response to the stress imparted during the coseismic rupture.
Figure 4. (a) Spatial distribution of the cumulative afterslip obtained from joint inversion of 3D GPS data and time series of repeating earthquake slip corrected for visco-elastic relaxation in a layered Earth model (Fig. 2b). Overlap contours represent the imparted Coulomb failure stress change on the megathrust due to the Tohoku event. (b–d) Examples of time series of the inverted afterslip and the creep obtained from repeating earthquakes. The locations of the corresponding repeater sequences are marked in panel (a). The error bars on the CRE time series represent ±50% of their actual values. The afterslip models for all three scenarios are shown in Fig. 3.

Given the pattern of the repeating earthquakes and assuming that the majority of aftershocks occur on the fault interface in areas surrounding the coseismic rupture (Asano et al., 2011), we want to test whether the evolution of aftershocks might be governed by the afterslip. To this end we investigate the correlation between cumulative number of aftershocks and the afterslip time series. Fig. 4b shows a bivariate plot relating time series of the cumulative afterslip at the patch of maximum afterslip to the corresponding cumulative number of aftershocks within a 35 × 35 km² area around that patch. The linear relation exhibited in the plot suggests that both afterslip and aftershocks follow the same temporal pattern and thus the evolution of aftershocks is linked to afterslip driven by the coseismic stress changes. A similar relation has been observed elsewhere (Hsu et al., 2006). Closer to the trench, where the distance of the aftershocks to the slab increases (Fig. 4a), the linear relation weakens (Fig. 4c, d). Here the aftershocks are widely scattered in the volume surrounding the zone of the primary rupture asperity, diverse focal mechanisms show that the aftershocks are dominantly off-fault (Asano et al., 2011), the inferred afterslip is small, and aftershocks do not follow a simple relation with the inferred afterslip.

Using the afterslip model and the coseismic Coulomb failure stress change (ΔCFS), we are able to estimate the fault mechanical parameter (A). This parameter represents the direct effect of increase of friction with log of velocity increase in rate-state friction framework for velocity-strengthening aseismic fault slip. Given the long term slip rate (V₀) and the afterslip velocity (Vₐ) directly following the main shock, we use the following relation (Perfettini et al., 2010):

\[A = \frac{\Delta CFS}{\log(V_a/V_0)} \]

Large values of A is an indicator for strong VS properties. Using the ΔCFS shown in Fig. 4 and estimate of V₀ from the first 4 days of afterslip (Fig. S7), we obtain the spatial distribution of A as shown in Fig. 6a. The values of A at the zone of maximum afterslip range between 0.2 and 0.5 MPa, similar to values found in previous studies (Perfettini et al., 2010). Moreover, in the zone of maximum afterslip as shown in Fig. 6b, the inverted afterslip model is reproduced well using \(U(t) = V_0 t \ln[(V_a/V_0)t + 1] \), predicted from rate-strengthening frictional sliding, assuming that frictional stress increases linearly with the logarithm of the sliding velocity and that the contributions from ongoing plate convergence and viscous relaxation are negligible (Marone, 1998). Given the \(V_0 = 8 \text{ cm/yr} \), the relaxation time (t₁) is estimated to be between 7.9 and 10.3 yrs.

The distribution of A indicates a complex pattern along the strike and dip of the megathrust. The identified zones of VS afterslip appear to coincide with zones of low P-wave velocities determined by seismic tomography (Zhao et al., 2011) (Fig. 5), suggesting material properties may control the fault frictional properties. The low velocity zones may be associated with serpentinization of the mantle wedge, subducted sediments and increased fluid pressure and as a result the subduction zone becomes decoupled (or weakly coupled) (Zhao et al., 2011) over the zones of low velocities.

Sediment analysis and hydrodynamic simulations indicate that the northeastern coast of Japan was repeatedly invaded by the tsunamis inferred to be due to Tohoku-size earthquakes (Minoura et al., 2005, 2001; Sawai et al., 2008). The average recurrence interval of these tsunamis is estimated to be ~1000 yrs (Minoura et al., 2001). The geological evidence and model simulations suggest that during the past several thousand years, earthquakes comparable in size and location to the Tohoku event have ruptured similar part of the subduction zone. These long term evidences in conjunction with the distribution of the frictional properties and the mechanical composition of the subduction zone, favors zones with persistent VW vs VS properties.

6. Conclusions

We investigated 15-month postseismic deformation associated with Tohoku earthquake. We found that a most of the postseismic deformation data can be explained using a combination of frictional afterslip and viscous relaxation of the upper mantle and lower crust. The estimated 15-month afterslip reflects a moment release of \(2.30 \times 10^{21} – 7.9 \times 10^{21} \) Nm equivalent to \(M_w = 8.17 – 8.53 \). The correlation between areas of increased ΔCFS and zone of afterslip, suggests that the afterslip is a direct response to the stress imparted during the coseismic rupture. Using rate-state friction law, we estimated the fault mechanical properties, assuming that the patches of high afterslip are characterized by velocity strengthening properties. The presented observations and models suggest that the estimated mechanical properties are likely to be persistent in time and space and thus Tohoku-size earth-
Fig. 5. (a) Shows the spatial distribution and mean distance of the aftershocks from the plate interface. Here only events within 15 km from the slab are considered. The contour lines indicate the inverted slip of the coseismic rupture (blue lines) and 15-month cumulative afterslip (magenta). Contours are in meters. (b–d) Bivariate plots showing the mutual relation between afterslip time series and cumulative number of aftershocks within 15 km of the subduction thrust in a 35 km × 35 km box at selected areas shown in panel (a). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. (a) Fault mechanical parameter. The filled color contours shows the spatial distribution of the rate-state frictional parameter \(A \) indicating zones of variable velocity strengthening. The contour lines with blue–white–red colorbar show the P-wave tomography in the megathrust zone (Zhao et al., 2011). Red indicates zones of high seismic velocity \(V_p \), while blue is associated with zones of low velocity. (b) Shows the modeled cumulative afterslip (red) obtained at the location marked by letter b in panel (a) versus theoretical displacements (black) given by equation \(U(t) = V_d t \ln(V_d/V_d_{ct})(t + 1) \) predicted from rate-strengthening frictional sliding, which assumes that frictional stress increases linearly with the logarithm of the sliding velocity (Marone, 1998). In this equation, \(U(t) \) is the cumulative afterslip. Given \(V_d = 8 \text{ cm/yr} \), the relaxation time \(t_r \) is estimated to be between 79 and 103 yrs at this location. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Faults have ruptured similar part of the subduction zone and will do so again.

Appendix A. Supplementary material
Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.epsl.2014.08.035.

References

