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[1] The behavior of individual events in repeating earthquake sequences in California,
Taiwan and Japan is better predicted by a model with fixed inter-event time or fixed
slip than it is by the time- and slip-predictable models for earthquake occurrence. Given
that repeating earthquakes are highly regular in both inter-event time and seismic moment,
the time- and slip-predictable models seem ideally suited to explain their behavior.
Taken together with evidence from the companion manuscript that shows similar results
for laboratory experiments we conclude that the short-term predictions of the time- and
slip-predictable models should be rejected in favor of earthquake models that assume
either fixed slip or fixed recurrence interval. This implies that the elastic rebound model
underlying the time- and slip-predictable models offers no additional value in describing
earthquake behavior in an event-to-event sense, but its value in a long-term sense cannot be
determined. These models likely fail because they rely on assumptions that oversimplify
the earthquake cycle. We note that the time and slip of these events is predicted quite
well by fixed slip and fixed recurrence models, so in some sense they are time- and
slip-predictable. While fixed recurrence and slip models better predict repeating earthquake
behavior than the time- and slip-predictable models, we observe a correlation between slip
and the preceding recurrence time for many repeating earthquake sequences in Parkfield,
California. This correlation is not found in other regions, and the sequences with the
correlative slip-predictable behavior are not distinguishable from nearby earthquake
sequences that do not exhibit this behavior.
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1. Introduction

[2] As deterministic earthquake prediction has fallen out
of vogue, probabilistic earthquake forecasting has risen.
Initially suggested nearly forty years ago [Utsu, 1972a, 1972b;
Rikitake, 1974; Hagiwara, 1974], probabilistic methods con-
sider earthquakes as a renewal process where elastic strain
energy accumulates over time and is released in the subse-
quent earthquake. This idea is based in elastic rebound theory
[Gilbert, 1884; Reid, 1910]. A myriad number of statistical
distributions have been suggested to describe earthquake
recurrence behavior including the Double Exponential [Utsu,
1972b], Gaussian [Rikitake, 1974], Weibull [Hagiwara,
1974], Lognormal [Nishenko and Buland, 1987], Gamma
[Utsu, 1984], and Brownian Passage Time (Inverse Gaussian)

[Matthews et al., 2002]. These models treat earthquake
occurrence as a point stochastic process with parameters of
mean interval and a measure of dispersion about the mean.
When the process depends only on the reset of the system by
the last earthquake, it falls into the class of Independent and
Identically Distributed (IID) models. For such models, the
forecast of the time and/or size of the next event in the
sequence does not depend on the specifics of the preceding
event, i.e., it is a memoryless system. Properly applied, these
models are used to interpret sequences of earthquakes that re-
rupture the same fault area, treating them as a point process,
but not to earthquake catalogs involving multiple sources. For
the most part, the proposed models have employed well-
developed statistical distributions with well-studied applica-
tions to failure time problems. These models adequately
describe the recurrence behavior of many repeating earthquake
sequences, but they cannot be discriminated easily from each
other [Ellsworth, 1995; Matthews et al., 2002]. At present,
only an Exponential Distribution (Poisson distribution) can be
rejected as a descriptor of most repeating earthquake sequen-
ces [Ellsworth, 1995].
[3] In contrast to the memoryless assumption of IID

models discussed above, some authors have attempted to
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describe recurrence behavior using physical models that
depend on the specifics of the sequence to date. Some of the
earliest physical models describing earthquake behavior are
the time- and slip-predictable models. Initially suggested
over thirty years ago [Bufe et al., 1977; Shimazaki and
Nakata, 1980], these models provide a physics-based
method in which earthquake behavior can be predicted. As
with the statistical models described previously, these mod-
els are based upon the “elastic rebound theory” of Reid
[1910], which states that stress builds on a fault during the
interseismic period, is released in an earthquake and then
re-accumulates in the succeeding interseismic period. These
models also share the characteristic that they treat earth-
quakes as a point process. The time-predictable model states
that an earthquake will only happen once the stress relieved
in the last earthquake has been re-accumulated, thus the
interseismic period will increase in length in proportion to the
size of the last earthquake (Figure 1a). The slip-predictable
model follows a similar idea where all the stress accumu-
lated since the last earthquakes is released in the next
earthquake, meaning that as the time since the previous
earthquake increases, the next earthquake should increase in
size as well (Figure 1b). The simplicity of these models has
made them popular tools for describing the behavior of
earthquakes. For example, the 2002 earthquake probability
model for the San Francisco Bay Area used a variant of the
time-predictable model in one branch of its logic tree
[Working Group on California Earthquake Probabilities,
2003]. In addition to the very simply defined time- and
slip-predictable models, variants upon them have been

proposed that combine a time- and/or slip-predictable model
with a purely statistical Poissonian model [Cornell and
Winterstein, 1988; Wu et al., 1995]. While these models
have been shown to be sufficient for engineering seismic
hazard analysis, we choose to focus on the simpler-time and
slip-predictable models because they are more widely used.
[4] Initial studies of the time- and slip-predictable models

seemed promising, qualitatively showing that the predictions of
these models came close to the observations for individual
faults [e.g., Bufe et al., 1977; Shimazaki and Nakata, 1980].
This led some to further develop these models, adding addi-
tional complexity to explain earthquake behavior that they
called the time- and magnitude-predictable models [e.g.,
Papazachos, 1989, 1992;Papazachos et al., 1994].While these
authors argued that their models have predictive power [e.g.,
Papazachos, 1989, 1992; Papazachos et al., 1994; Papazachos
and Papadimitriou, 1997; Papadimitriou et al., 2001], the
application was over fault systems, regions, and globally,
neglecting the constraint that the time- and slip-predictable
models assume that earthquakes are a point process.
[5] While the above studies argue that the time- and slip-

predictable models (and variants of them) offer significant
predictive power, there are a number of studies that argue
against them. For example, Mulargia and Gasperini [1995]
using a similar region-based method as the studies above
rejected the possibility that time and slip-predictable models
appropriately explain earthquake behavior. Others have
rejected all models that utilize the elapsed time since the pre-
vious event to predict future earthquakes and instead argue for
clustering [e.g.,Davis et al., 1989; Kagan and Jackson, 1991].
The time- and slip-predictable models have also been exam-
ined and rejected for multiple sections of the San Andreas
Fault. Quantitative analysis of paleoseismic recurrence data at
Wrightwood on the San Andreas Fault shows that the slip-
predictable model does not fit the paleoseismic record and the
case for the time-predictable model is weak as well [Weldon
et al., 2004]. Statistical analysis and inverted slip distribu-
tions for the recurring M6.0 Parkfield earthquakes [Bakun and
McEvilly, 1984], demonstrates that the Parkfield earthquakes
are neither explained by time-predictable model [Murray and
Segall, 2002] nor the slip-predictable model [Murray and
Langbein, 2006].
[6] Given the above discussion, the applicability of the

time- and slip-predictable models is still clearly under debate.
Here we attempt to resolve the debate regarding these models
by analyzing repeating earthquakes. The concept of a repeat-
ing earthquake source is central to this paper, and for this
reason it needs to be carefully defined. These are earthquakes
that repeatedly rupture the same fault area in earthquakes of
similar magnitude. They are conceptually related to the char-
acteristic earthquake model of Schwartz and Coppersmith
[1984] that states that faults and fault patches typically rup-
ture in earthquakes of a similar size. To make the correlation to
the characteristic earthquake model, we must first demonstrate
that these earthquakes meet both of the above criteria by direct
measurement. Beginning with the work on earthquake doub-
lets [Poupinet et al., 1984; Fréchet, 1985] cross-correlation
measurements of differential travel times for pairs of earth-
quakes have been used to estimate the spatial separation of
their moment centroids. When the separation between cen-
troids is less than the rupture dimension of the events, the
earthquakes can be considered to rupture the same fault area.

Figure 1. Cartoon showing the idealized behavior of the
(a) time-predictable model and (b) the slip-predictable
model. Slip deficit is plotted against time, such that a sudden
drop in the slip-deficit represents an earthquake. For the
time-predictable model (Figure 1a), there is a constant fail-
ure threshold that predicts an earthquake once it is reached,
although the size of the earthquake is unknown. For the
slip-predictable model (Figure 1b), there is a constant mini-
mum stress, such that an earthquake will release all the slip
accumulated since the last earthquake. Both of the models
have a constant loading rate (slip deficit rate), as indicated
by the diagonal lines.

RUBINSTEIN ET AL.: EARTHQUAKES ARE NOT TIME/SLIP PREDICTABLE B02306B02306

2 of 23



Rupture overlap is now commonly confirmed using cross-
correlation and double-difference earthquake relocation
methods [e.g.,Waldhauser and Ellsworth, 2000; Schaff et al.,
2002; Uchida et al., 2006, 2007; Waldhauser and Schaff,
2008]. Repeating earthquakes have also been shown to be of
very similar sizes [e.g., Rubinstein and Ellsworth, 2010].
[7] We choose to analyze the time- and slip predictable

models with repeating earthquakes because they offer many
advantages over the data sets previously used to analyze the
time- and slip-predictable models. First, the highly similar
waveforms of repeating earthquakes (Figure 2) allow for
very precise estimation of relative moment, such that the
uncertainty in moment is approximately �6.6%, equivalent
to an uncertainty in magnitude of Mw � 0.02 [Rubinstein
and Ellsworth, 2010]. This is drastically lower than the
uncertainty in magnitude for most earthquakes. High levels
of uncertainty plague both supporters and detractors of the
time- and slip-predictable models. For example, the NEIC
estimates that the 2s uncertainty in their magnitude esti-
mates is �0.2 magnitude units (J. Dewey, personal com-
munication, 2011). This gives an uncertainty in moment of
�100% [Hanks and Kanamori, 1979]. There are undoubt-
edly large levels of uncertainty in earthquake size when
using paleoseismic data [e.g., Weldon et al., 2004] or geo-
detic data [e.g., Murray and Segall, 2002; Murray and
Langbein, 2006]. Having much more precise estimates of
earthquake size allows for a much stricter test of the efficacy
of the models. Another advantage of the small repeating
earthquakes employed here is that they occur more fre-
quently than the larger earthquakes that have been used to
test the time- and slip-predictable models. The more frequent
nature of repeating events provides a larger data set that
allows for more robust statistics.

[8] It also seems more likely that repeating earthquakes
better fit the fundamental assumptions of the time- and slip-
predictable models than many of the larger earthquakes
studied above, so it seems sensible that they should be
explained by these models. One critical assumption of the
time- and slip-predictable models is that the loading rate is
constant. We know this assumption is not true when applied
to large regions because along strike variability in defor-
mation rates has been observed in multiple locations [e.g.,
Murray and Langbein, 2006; Konca et al., 2008]. Repeating
earthquakes also are not subject to the region definition
ambiguities that many of the region-based studies mentioned
above, as there is a clear way to define repeating earth-
quakes. Additionally, region-based or even fault-based tests
of these models might fail because the stress in a region
might not be accommodated by an individual characteristic
earthquake. Effectively, fault-based or region-based meth-
ods do not represent a point process, while repeating earth-
quakes rupture approximately the same area every time with
very similar slips. We choose repeating earthquakes because
they represent the simplest earthquake sources that we know
of. Even in the case of the “characteristic” M6 earthquakes
in Parkfield, California, it appears that different parts of the
fault rupture in successive events [Murray and Langbein,
2006], meaning that each patch needs to be evaluated sepa-
rately instead of jointly. While repeating earthquakes appear
to be simpler than most earthquakes we know, there are
suggestions that there is some variability in slip distribution
from event to event [Dreger et al., 2011].
[9] To first order, these repeating earthquakes should be

considered both time- and slip-predictable, in that they are
highly regular in both recurrence and slip. Previous studies
have, in fact, argued that the recurrence time of repeating
earthquakes can be predicted (J. M. Zechar and R. M.
Nadeau, Predictability of repeating earthquakes near Park-
field, California, submitted to Geophysical Research Letters,
2012) in a short-term sense. While the recurrence of the
sequences used by Zechar and Nadeau (submitted manu-
script, 2012) can be predicted, we are specifically interested
in testing the time- and slip-predictable models and not other
models that may predict these quantities. Previous work has
considered the fit of the time- and slip-predictable models
to repeating earthquakes. Nadeau and Johnson [1998] argue
that repeating earthquake sequences in Parkfield should be
considered to be time- and slip-predictable because the misfit
of their predictions typically are on the order of 10–15%.
They continue to say that since the fit of the time- and slip-
predictable models for these sequences is approximately the
same, these events obey elastic rebound theory. We offer
the alternative explanation that these sequences have near-
constant recurrence and slip such that the time- and slip-
predictable models fit the data well, but they are not necessary
to explain the data. We also note that the analysis of Nadeau
and Johnson [1998] is a study of the long-term behavior of
these sequences instead of on an event-to-event basis as is
conducted in this article.
[10] The long-term slip behavior of repeating earthquakes

is such that they appear to release slip in a fashion that is
linear with time (Figure 3), i.e., they are slip-predictable. In a
long-term sense, repeating earthquakes could also be con-
sidered characteristic, in that they have very narrow

Figure 2. Example of a repeating earthquake sequence as
recorded by one station. This is sequence 1 analyzed from
Parkfield, as recorded by NCSN station PSA. The events
occurred between 1984 and 2001. The seismograms are
low-pass filtered with a corner frequency of 10 Hz. The high
similarity of the waveforms indicates that they occurred in
the same location with the same slip-sense.
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distributions of moment (median coefficient of variation of
0.10 for the 45 repeating earthquake sequences examined
here) (see auxiliary material).1 Repeating earthquakes appear
to be highly regular in recurrence (median coefficient of
variation of 0.30 for the 45 repeating earthquake sequences).
This is also very clear when examining the data graphically
(Figure 4).
[11] While sequences may be regular and predictable in a

long-term sense, we are specifically interested in the event-
to-event variability, and specifically whether the time- and
slip-predictable models provide more information about the
next earthquake than other models. Here we choose to test
the time- and slip-predictable models against the simplest
models possible: a model that has either fixed recurrence
interval or fixed slip. A fixed recurrence model could be
considered to be a “perfectly-periodic” model and fixed slip
model is simplified version of the characteristic earthquake
model. The fixed recurrence/slip models are simplified
IID models in that they are constant with zero variation
around a mean, instead of a typical IID model that has some
variation around a mean. We specifically search for occa-
sions where the time or slip-predictable model better predicts
the event-to-event behavior of a repeating earthquake
sequence than the fixed recurrence or fixed slip models,
respectively. Should we find this, it would indicate that the
time- and/or slip-predictable models do provide additional
value for predicting the behavior of the next earthquake at

Figure 3. Example of a stair-step diagram for repeating
earthquake sequence 1 in Parkfield. Cumulative slip of the
sequence is plotted as a function of time. Relative slip is esti-
mated using the SVD method described by Rubinstein and
Ellsworth [2010], given the assumption of a constant area.
Actual slip is then computed using the mean magnitude of
the sequence given the following two assumptions: (1) stress
drop is 3 MPa; (2) shear modulus is 10 GPa. The extremely
regular recurrence and similar slips result in what appears
to be a near-linear slip rate.

Figure 4. The 334 earthquakes in 45 repeating earthquake sequences in Parkfield (25 sequences,
214 events), Japan (14 sequences, 88 events), and Taiwan (6 sequences, 32 events) plotted in (a) a
time-predictable sense, (b) a slip-predictable sense. Moment and recurrence interval are normalized, for
each repeating earthquake sequence, such that the mean recurrence interval and mean moment of each
event is 1, such that all sequences can be plotted together. Each earthquake within a sequence is plotted
as a dot. One can see that there is much more variability in recurrence interval than in moment for the
repeating earthquake sequences we examine. The shaded line indicates what the time- and slip-predictable
models predict the relationship between moment and recurrence interval given 2s error bounds based
upon the measurements of relative moment [Rubinstein and Ellsworth, 2010]. One can clearly see that
the majority of the repeating earthquakes do not fall within the shaded region.

1Auxiliary materials are available at ftp://ftp.agu.org/apend/jb/
2011jb008724.
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the same location, otherwise it will indicate using an IID
model that knows nothing about the history of a sequence is
more useful in predicting event-to-event behavior.
[12] We examine repeating earthquakes in three regions

located in different tectonic settings: Parkfield, California
(strike-slip), Taiwan (collisional), and Japan (subduction).
For repeating earthquake sequences in the these locations,
we find no evidence that they are better described by the
time- or slip-predictable models than they would be by
similarly simple IID models with invariant recurrence time
or constant slip, respectively. The time- and slip-predictable
models are one-parameter models that simply invert for a
slip-deficit rate (loading rate). We also explore a two-
parameter version of these models where we invert for a
nonzero intercept. Similar statistical tests show that with the
exception of slip-predictability for repeating earthquakes in
Parkfield, the two-parameter time- and slip-predictable
models do not appear to better describe earthquake behavior
than constant recurrence and constant slip models, respec-
tively. While the two-parameter slip-predictable model does
have modest predictive power for the Parkfield data, at
present we have no way to distinguish these sequences from
those that are not well described by the two-parameter slip-
predictable model. Thus, while we have demonstrated there
is slip-predictable sense scaling, it is of little utility since we
have no way of knowing when we can apply this scaling.
[13] To complement this work on natural earthquakes, we

also examine the time- and slip-predictable models and their
application to laboratory generated earthquakes in a com-
panion paper [Rubinstein et al., 2012]. Like repeating
earthquakes, laboratory earthquakes are particularly simple
failures that are far more repeatable than most earthquakes.
Laboratory earthquakes offer further advantages over regular
earthquakes in that some of the key variables (loading rate,
exact measurement of slip, completeness of event catalog)
that are hidden or ambiguous for repeating earthquakes can
be directly measured in the lab. Even with all of the advan-
tages offered by laboratory data, we find that fixed slip and
recurrence models better explain the behavior of laboratory
earthquakes than the time and slip-predictable models.

2. Models

[14] In this section, we explain the models that we are
exploring in this paper. The two key models that we are testing
are the time-predictable model and the slip-predictable
model. These simple, one-parameter models arise out of
elastic rebound theory [Reid, 1910] and predict the time
and slip of the next earthquake respectively. We test both
models against an IID model with either fixed mean recur-
rence interval or fixed mean earthquake size. We also
examine variants of the time- and slip-predictable models
that have nonzero intercepts, with the intent of testing
whether the size of the preceding earthquake or the time
since the previous earthquake hold any predictive power to
describe the next earthquake.

2.1. Time-Predictable Model

[15] The time-predictable model is based on the assump-
tion of a constant failure threshold and a constant loading
rate (Figure 1a) at an individual location on a fault. It

predicts the time of the subsequent earthquake to be the ratio
of coseismic slip to the slip deficit rate:

tiþ1 ¼ si
s′
; ð1Þ

where ti+1 is the predicted inter-event time, si is the slip in the
previous earthquake, and s′ is the slip deficit rate. Strictly
defined, the time-predictable model has a zero-intercept,
meaning that if there is an earthquake of zero size, the next
earthquake will occur immediately.
[16] In addition to the time-predictable model, we also

explore a model where the recurrence time is dependent
upon the moment of the previous earthquake, but without the
requirement of a zero-intercept. This model allows for a
minimum hold time c following an earthquake, such that
even if the preceding earthquake was of zero size, the next
earthquake could not happen for at least time c:

tiþ1 ¼ si
s′
þ c: ð2Þ

We apply this formulation in a way that includes the possi-
bility that this minimum hold time is negative, which would
be acausal. The physical interpretation of this model is less
clear than the time-predictable model, but we test it none-
theless with the desire to demonstrate whether there is any
predictive power in the knowing the size of the preceding
earthquake. Others have claimed predictive power when
using similar formulations that have a nonzero intercept
added to a time-predictable model [e.g., Papazachos, 1989].

2.2. Slip-Predictable Model

[17] The slip-predictable model is based upon the
assumptions of a constant loading rate and that all the stress
accumulated in the interseismic period is released in the
following earthquake (Figure 1b). The slip in the upcoming
event is calculated as the product of the seismic moment
deficit rate and the elapsed time since the most recent event:

siþ1 ¼ tiþ1 � s′; ð3Þ

where, si+1 is the slip-predictable slip in the upcoming
earthquake, and ti+1 is the elapsed time since the previous
event. Strictly defined, the slip-predictable model has a zero-
intercept, meaning that if an earthquake immediately follows
the previous earthquake, it should be of zero size.
[18] In addition to the slip-predictable model, we also

explore a model where the slip is dependent upon the time
elapsed since the previous earthquake, but without the
requirement of a zero-intercept. This model allows for a
minimum earthquake size d, where an earthquake that
immediately followed the previous event would be of size d:

siþ1 ¼ tiþ1 � s′þ d: ð4Þ

We include the possibility that this minimum earthquake
size d is negative, which would be non-physical. The physi-
cal interpretation of this model is less clear than the slip-
predictable model, but we test it nonetheless with the
desire to demonstrate whether there is any predictive power
in the recurrence interval. Others have claimed predictive
power when using similar formulations that have a nonzero
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intercept added to the slip-predictable model [e.g., Papazachos,
1992].

2.3. Fixed Slip Model

[19] We validate the slip-predictable model against a
simplification of the characteristic earthquake model
[Schwartz and Coppersmith, 1984]. The characteristic
earthquake model states that faults and fault segments tend
to generate earthquakes of the same size. We simplify the
characteristic earthquake model such that we assume that
each earthquake is exactly the same size, fixing the slip to a
constant with no variability. We then compare this model to
the slip-predictable model and the slip-predictable model
with nonzero intercept.

2.4. Fixed Recurrence Model

[20] We validate the time-predictable model against a
perfectly periodic earthquake model. This model simply
states that there is an equal recurrence time between all
earthquakes, with no variability. We determine that the time-
predictable model and the time-predictable model with
nonzero intercept have predictive power when these models
better predict the event-to-event behavior of the repeating
earthquakes than the perfectly periodic model.

3. Data

[21] We analyze repeating earthquakes from three differ-
ent regions worldwide (Figure 5). The intent of analyzing
these varied data sets is to validate the claims of the pre-
diction models for earthquakes in varied tectonic environ-
ments, such that we can determine whether the time- and
slip-predictable models might be generalized and used
globally.
[22] For the purposes of this study, we define a repeating

earthquake sequence as a sequence of earthquakes that rup-
ture the same physical area of a fault in events of similar
size. The repeating earthquake sequences are defined dif-
ferently in each region. The methods used to identify these
sequences are described in sections 3.1–3.3. In addition
to the region-specific criteria we apply three criteria to all
of the sequences. First, we require a minimum of 5 events
in the sequence. This allows for multiple cycles of the repeat
to be used to compute a moment deficit rate. Second,
we require each sequence to only have events within �0.3
magnitude units of each other based on catalog measure-
ments. This ensures that the events are not wildly different
from each other. Using precise measurements, we find that
these events wind up having a much narrower magnitude
distribution that standard catalogs would suggest. Finally,
we require that no sequences contain aftershocks of larger
earthquakes.
[23] We filter out aftershocks because the recurrence rate

of repeating earthquakes is well known to change subse-
quent to large earthquakes [Schaff et al., 1998; Lengliné and
Marsan, 2009; Okada et al., 2007; Chen et al., 2010b].
Along with reduced recurrence intervals, creep and afterslip
are frequently observed following large earthquakes [e.g.,
Langbein et al., 2006], which might imply that the short-
term loading rate has changed, violating the assumption of a
constant loading rate. Thus, time intervals in which repeat-
ing events are activated as aftershocks must be avoided and

all aftershocks removed. For this study, we remove after-
shocks of M ≥ 6.0 earthquakes. Aftershocks are typically
defined as events following a previous, larger event within
certain space-time bounds. We explore three different defi-
nitions of the geometric bounds of an aftershock zone
[Kagan, 2002; Konstantinou et al., 2005; Wells and
Coppersmith, 1994]. These define the aftershock zone as
an exponential function of earthquake magnitude. We
choose the Wells and Coppersmith [1994] definition of
aftershocks, because we find the other two definitions too
restrictive, in that they eliminate all of the candidate
sequences in Japan and Taiwan. This is a somewhat arbitrary
choice, but there is evidence that the Kagan [2002] and the
Konstantinou et al. [2005] definitions of the aftershock zone
may be too large. Specifically, both define the aftershock
zone of 2003 San Simeon earthquake [Hardebeck et al.,
2004] as including the Parkfield area, where no short-term
change in seismicity was observed [Aron and Hardebeck,
2009], while the Wells and Coppersmith [1994] zone does
not include Parkfield. More recent work suggests that there
was a small change in the seismicity rate [Meng et al., 2010]
and larger changes in rates of tectonic tremor well below the
seismogenic zone [Shelly and Johnson, 2011], but we see no
significant changes in recurrence intervals following the San
Simeon earthquake for our repeats in Parkfield. Given this,
we feel justified in using the Wells and Coppersmith [1994]
definition. To complete the definition of what an aftershock
is, a definition in time is also necessary. For sequences that
fall within the geometric bounds of an aftershock zone, we
make the arbitrary choice that any repeat that occurs in the
three years following a main shock is an aftershock and
cannot be used for testing of the time- and slip-predictable
models. This rule means that for those sequences that fall
within the geometric bounds of an aftershock zone, some
sequences end at the time of the main shock, while other
sequences start three years following the main shock.
[24] Once we have defined the repeating earthquake

sequences, we compute relative moment of the events to
very high precision (�6.6% in moment) and then convert
this to relative-slip. We test three different assumptions
(relationships) between moment and slip: the constant area
assumption, the constant stress drop assumption, and a
scaling based upon observations of repeating earthquakes in
Parkfield [Nadeau and Johnson, 1998]. In the constant area
assumption, slip is proportional to moment. For the constant
stress drop assumption, slip scales with the cube-root of
moment. A recent study in the Parkfield area, suggests that
repeating earthquakes are consistent with a constant stress
drop scaling [Imanishi and Ellsworth, 2006]. The last model
we test is a relationship between slip and moment observed
for repeating earthquakes in Parkfield, California, which
states that slip scales with the sixth-root of moment [Nadeau
and Johnson, 1998; Johnson and Nadeau, 2002]. This
model will be referred to as the M1/6 assumption.

3.1. Parkfield, California

[25] We examine 25 repeating earthquake sequences near
Parkfield, California (Figures 5b and 5c, see auxiliary
material). The events lie on the creeping section of the San
Andreas Fault, a strike-slip plate boundary between the
North American and Pacific Plates. The events are believed
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to be loaded by creep in areas immediately adjacent to the
repeating events.
[26] The repeating earthquake sequences are a subset of

those that were initially defined by Rubinstein and Ellsworth

[2010] and occurred 1984–2005. The data we analyze comes
from the Northern California Seismic Network (NCSN), a
network of short-period one-component geophones. Candi-
date members of earthquake families were defined using

Figure 5
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windows of 128 samples in length (1.27 s) that are centered
upon the P arrival that have either (1) at least 5 stations that
recorded the events with correlation coefficient of 0.98 and
higher or (2) the correlation coefficient of their waveforms
exceeds 0.95 at a minimum of five stations and at those same
stations the standard deviation of the double-differenced delay
time between those events is less than 0.002 s, implying that
the event centroids are very close to each other. We validate
the families by relocating the events [Waldhauser and
Ellsworth, 2000] and requiring that the events overlap at
least 50% assuming a 30 bar stress drop, or could overlap at
least 50% given 2s errors from the relocation. We hand-
selected the repeating earthquake sequences, selecting those
sequences that we could be confident were complete. Specif-
ically, we removed sequences that appeared to have a “hole”
(i.e., the recurrence time appeared to double) so that our
repeating earthquake sequences were complete. While this
selection process means our statistical test is not over all kinds
of seismicity, it does ensure that we are not testing models of
earthquake behavior on incomplete data sets. Additionally, if
we can demonstrate that the time and slip-predictable models
apply to this subset of repeating earthquake sequences, it gives
hope that they may work for seismicity on the whole, or
alternatively if they do not work, it implies that they do not
work generally. Following the aftershock definition in section
3, we removed all events that occurred on September 28, 2004
or later (the day of the M6.0 Parkfield earthquake).

3.2. Japan

[27] We analyze 14 repeating earthquake sequences off the
east coast of the Tohoku region of Japan (Figure 5d, see
auxiliary material). These events are occurring in the Japan
Trench, the subduction plate boundary where the Pacific
Plate is subducted underneath the Okhotsk plate. The plate
boundary is believed to be partially coupled in this region
[Uchida et al., 2003, 2009; Pacheco et al., 1993; Peterson
and Seno, 1984], and the repeating earthquakes in this
region are thought to be loaded by the adjacent creep [Uchida
et al., 2005]. These sequences were initially defined by
Uchida et al. [2006, 2009] and occurred between 1995 and
2009. The events that occurred prior to March 2007 were
identified by Uchida et al. [2009]. Repeating earthquake
families were defined using waveform cross-spectrum anal-
ysis of 40 s seismograms requiring a coherence exceeding
0.95 at 2 or more stations for the following frequencies: 1, 2,
3, 4, 5, 6, 7, and 8 Hz. As with the Parkfield sequences, we
remove aftershocks based on a catalog of Japanese seismicity

and sequences that appear to have “holes” in their
chronology.

3.3. Taiwan

[28] We analyze 6 repeating earthquake sequences in the
Hualien region of Taiwan (Figure 5e, see auxiliary material).
The sequences are found in Eastern Taiwan adjacent to the
Longitudinal Valley Fault. The Longitudinal Valley fault is
an active collisional plate boundary between the Philippine
Sea Plate and the Eurasian Plate with a convergence rate of
8 cm/a. Approximately 3 cm/a are accommodated on the
Longitudinal Valley Fault [Huang et al., 2010]. Similar to
the repeating earthquakes sequences we examine in Japan
and Parkfield, active creep is observed and is believed
to load the repeating events [Chen et al., 2009]. These
sequences are a subset of those defined by Chen et al. [2009]
and occurred between 1994 and 2004. Repeating earthquake
families were defined using 10.5 s seismograms filtered
between 2 and 8 Hz and the following two criteria: (1) 75%
of the data must have a maximum cross-correlation coeffi-
cient greater than 0.75 and a differential S-P time of 0.02 s or
less or (2) 50% of the data must have a maximum cross-
correlation coefficient greater than 0.85 and a differential
S-P time of 0.01 s or less [Chen et al., 2008]. Like the
sequences from the other regions, aftershocks and sequences
with “holes” were removed.

4. Testing the Time-Predictable Model

4.1. Qualitative Assessment of Time-Predictability

[29] We first examine the time-predictable model. It pre-
dicts that recurrence time scales with the size of the previous
event (Figure 1). If we plot recurrence time against slip in
the previous earthquake, the time-predictable model predicts
positive slopes, with the recurrence time increasing with
increasing slip in the preceding earthquake. Examining this
relationship for the repeating earthquakes described in
section 3, we find that there is little evidence that the time-
predictable model adequately predicts the behavior of the
repeating earthquakes (Figure 6). Most of the repeating
earthquake sequences in all three regions look like scattered
data without a clear trend. For those sequences where we can
see a trend in the data, there are many sequences where the
recurrence time decreases with increasing preceding slip,
counter to the predictions of the time-predictable model.
Qualitatively, the lack of a consistent relationship between
slip (moment) and the subsequent inter-event time indicates

Figure 5. Locations of repeating earthquakes studied. (a) Map showing the locations of all the repeating earthquakes stud-
ied. Black boxes indicate the zoomed regions shown in the remaining subplots. Yellow stars indicate repeating earthquakes
studied. (b) Map of repeating earthquakes and seismicity in Parkfield. Yellow stars indicate repeating earthquakes where a
two-parameter slip-predictable model did not better describe the repeating earthquakes. Red stars indicate repeating earth-
quakes where a two-parameter slip-predictable model better described the repeating earthquakes. Blue circles represent the
relocated seismicity M ≥ 1.0 in the region 1/1984–6/2005 [Thurber et al., 2006]. Black line indicates extent of cross section
shown in Figure 5c. (c) Cross-sectional view of seismicity in Parkfield (1/1984–6/2005). Circles are sized to represent the rup-
ture area assuming a circular elastic crack with 3 MPa stress drop. Blue circles are background seismicity, yellow circles are
repeating earthquakes where a two-parameter slip-predictable model did not better describe the repeating earthquakes, and red
circles indicate repeating earthquakes where a two-parameter slip-predictable model describes the repeating earthquakes bet-
ter. (d) Map of repeating earthquakes and seismicity in Japan. Yellow stars indicate repeating earthquakes and blue circles
represent the JMA catalog of M ≥ 5.0 seismicity in the region for 2/1995–9/2009. (e). Map of repeating earthquakes and seis-
micity in Taiwan. Yellow stars indicate repeating earthquakes and blue circles represent the NEIC-PDE catalog of M ≥ 4.0
seismicity in Taiwan 8/1991–12/2007.
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that the time-predictable model does not explain the behavior
of the repeating earthquakes in Parkfield, Japan, and Taiwan.
With regards to the qualitative relationships discussed above
and shown in Figure 6, we note that it only shows recurrence
time versus moment – thus assuming a constant slip area. The
other moment-slip relationships described in section 3 are not
shown because while the slope of the lines will vary in these
slip relationships, the sign of the slope will not change nor
will the consistency of the trend.

4.2. Cross-Validation to Compare the Time-Predictable
Model to the Perfectly Periodic Model

[30] Since we are interested in evaluating the predictive
power of these models, we evaluate them using leave one out
cross-validation, similar to a jack-knife test [Tukey, 1958;
Efron, 1979]. Leave one out cross-validation is a method that
evaluates how well a model predicts the behavior of the data
that it is being used to describe. In this process, each data point
is removed individually, the model is computed from the
remaining data and the value of the omitted data is then pre-
dicted. The residual between the predicted value and the
observed value gives an estimate of the quality of fit of the
model for that individual data point. We can assess the overall
predictive power for any individual model for a given data set
by computing the RMS of the prediction-errors for each data
point. Using cross-validation, we are able to evaluate the pre-
dictive power of these models without having to wait for later
events to happen.
[31] We cross-validate to determine whether the time-

predictable model or the perfectly periodic model better
describes the repeating earthquake sequences that we are
studying. The time-predictable model is deemed superior
to the perfectly periodic model when the RMS of its
cross-validation prediction-errors is lower. To evaluate the
time-predictable model we cross-validate each repeating
earthquake sequence six times since we have two models
(time-predictable and perfectly periodic) and three slip/
moment relationships. The results of this analysis are rather
surprising in that many more sequences appear to be fit by
the time-predictable model than qualitative analysis would
have suggested (Table 1). Most notably, for the constant
stress-drop assumption and the M1/6 assumption the time-
predictable model better predicts the behavior of four of six
of the repeating earthquakes in Taiwan than the perfectly
periodic model. It is also striking that half or more than half
of the repeating earthquakes in Japan are better explained by
the time-predictable model given any of the assumptions.
Parkfield is also remarkable in that 11 of the 25 sequences
are better fit by the time-predictable model given the M1/6

assumption.

Figure 6. The qualitative fit of the time-predictable model
for all the repeating earthquake sequences examined in
(a) Parkfield, (b) Japan, and (c) Taiwan. Recurrence time for
each event within an individual sequence is plotted against
the moment of the preceding event. The sequences are colored
differently so that they can be distinguished from each other.
Lines connect all the earthquakes within a sequence, but do
not imply the chronological ordering of the events. A sequence
that is time-predictable is expected to have a positive slope,
i.e., the recurrence interval would increase as the size of the
last event is increased.Moment of the events is used as a proxy
for slip, following the constant area assumption. Using other
moment-slip relationships will change the shape of the lines,
but not the trend or lack thereof, which is a qualitative measure
of whether a sequence is time-predictable. Sequence 1 in
Taiwan is removed because some of its repeats are very short
and including it in this plot would make it difficult to see the
other sequences on the same figure. A consistent trend in a
time-predictable sense (positive slope) cannot be found in
this data.
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4.3. Reshuffling to Determine How Often
a Sequence Would Randomly Appear
to Be Fit by the Time-Predictable Model

[32] While these results suggest that the time-predictable
model might be useful for predicting the timing of repeating
earthquakes and earthquakes in general, we must explore
whether these observations are significant or simply a result
of the data distribution. To this end, we first determine how
likely it is that the data in a randomly reordered repeating
earthquake sequence given a moment:slip relationship will
be better fit by the time-predictable model than the perfectly
periodic model. Given this information, we then compute
how likely it is that the total number of sequences observed
to be better fit by the time-predictable model (given a
moment:slip assumption) would occur randomly.
[33] To compute how likely it is that any individual

sequence would randomly appear to be better fit by the time-
predictable model we shuffle the relationship between the
recurrence times and the slips. This maintains the distribu-
tion of the recurrence times and slips, but breaks any rela-
tionship between recurrence and slip. We then cross-validate
to determine whether the time-predictable model better
describes the randomly reordered repeating earthquake
sequences than a perfectly periodic model. The assumption
underlying this process is that an earthquake sequence that
was perfectly fit by the time-predictable model would not
appear time-predictable when reshuffled.
[34] For sequences that have at least 8 events in them (and

thus 7 recurrence times) we compute 1000 unique reshuffles
that are different from the original ordering of the data. For
all other sequences we compute all of the available reshuf-
fles, which is simply n! where n is the number of events in
the sequence. Using the random reshuffles we compute the
likelihood that any sequence given a slip:moment relation-
ship would randomly appear to be better fit by the time-
predictable model (Figure 7). Examining the probability
that any individual sequence would be better fit by the
time-predictable model with randomized data, we find that
many sequences could very often appear to be fit by it. For
each region, one can see at least one sequence that more
than 50% of the time would appear to be better fit by the
time-predictable model simply by random chance. Given
these results, it now seems somewhat likely that the number
of sequences that we observe to be better fit by the time pre-
dictable model is simply a result of random chance.
[35] Before we assess the likelihood that the number of

sequences we observed to be better fit by the time predict-
able model could be observed by random chance, we note a
relationship between the number of sequences that appear to
be better fit by the time-predictable model and the exponent

in the slip:moment relationship. Examining the reshuffled
data (Figure 7), we see that the probability that a sequence is
better fit by the time-predictable model increases as the
exponent in the slip:moment relationship decreases, i.e., the
number of sequences that appear to be better explained by
the time predictable model increases going from the constant
area assumption to the constant stress drop assumption to the
M1/6 assumption. We also see this in the actual data
(Table 1). We believe that this is happening because reduc-
ing the exponent of the moment reduces the variability in
the slip, the independent variable in the case of the time-
predictable model. If the independent variable is not actually
related to the dependent variable, i.e., it’s random, by
reducing the independent variable, we reduce the variability
in the model predictions of dependent variable. Assuming
the independent and dependent variable are not related, this
would likely reduce the prediction-error.
[36] As noted above, this process relies upon the

assumption that an earthquake sequence that is perfectly
explained by the time-predictable model would not appear
time-predictable when it is reshuffled. We verify this
assumption using synthetic data sets that are perfectly fit by
the time-predictable model. These data sets are generated
where moment has a coefficient of variation of 0.10 in a
lognormal distribution, the same coefficient of variation as
the earthquake data we use in this study given a constant
area assumption. The coefficient of variation of slip
decreases with decreasing exponent in the slip-moment
relationship. For short sequences (less than 8 events), which
are the majority of the sequences studied, the likelihood that
sequences that are perfectly fit by the time-predictable model
are better fit by the time-predictable model when reshuffled
(i.e., a false positive) is approximately 15–22%, depending
on the number of events and the slip-moment relationship.
For larger data sets (10–15 events), this likelihood decreases
to 4–9%. Given these numbers, we can expect false positive
observations where sequences appear to be better explained
by the time-predictable model when they are actually not.
The low probabilities, though, indicates that there will be
few false positives, meaning that our reshuffling test is fair.

4.4. Computing the Probability Distribution
of the Number of Sequences That Appear
to Be Fit by the Time-Predictable Model

[37] Having computed the likelihood that any repeating
earthquake sequence will be better fit by the time-predictable
model based on its data distribution alone, we can now
compute the likelihood that the number of sequences that we
observe to be better fit by the time-predictable model is
a result of random chance. We examine this relationship
for each region and slip:moment scaling. We separate the
regions from each other for twomain reasons: (1) the behavior
(and predictability of it) of repeating earthquakes may vary
from region to region and (2) the repeating earthquakes in
each region have been defined differently and thus the char-
acteristics of the repeating earthquakes in each region might
be different. To examine how likely it is that the number of
sequences observed to be better fit by the time-predictable
model is a result of chance, we must explore all the possible
combinations. For the Parkfield case, there are 25 repeating
earthquake sequences, and thus there are 225 possible com-
binations. To compute the random probability of 0 repeating

Table 1. Number of Sequences That Appear to Be Time-
Predictablea

Constant Area Constant Stress Drop Slip a M0
1/6

Parkfield 6/25 9/25 11/25
Japan 7/14 8/14 8/14
Taiwan 2/6 4/6 4/6

aThis table lists the fraction of the total number of sequences where cross-
validation indicates that the time-predictable model better predicts the
behavior of the repeating earthquakes than the perfectly periodic model.
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earthquake sequences being better fit by the time predictable
model, we simply need to compute the product of the proba-
bilities that each sequence is better explained by perfectly
periodic model. Things are more complicated as the number
of time-predictable sequences increases since we need to
compute the probability of each possible combination of
time-predictable/not-time-predictable sequences and sum
them over all the possible combinations. Computing these
probabilities based on all the combinations gives a probability
distribution of how many sequences can be expected to be
better explained by the time-predictable model for a given
region and slip:moment relationship.
[38] These probability distributions are shown for all 9

combinations of region and slip scaling relationships in
Figure 8. For these probability distributions we identify the
largest 5% of the data and smallest 5% of the data, giving us
the region where 90% of the random reshuffled combina-
tions lie. If our observations of the number of sequences that
appear to be better fit by the time-predictable model fall

outside these bounds, we can be 90% certain that we are
observing a real phenomenon. For the nine combinations,
we see that none of the nine fall outside the 90% bounds.
This strongly suggests that the observation that the time-
predictable model describes many repeating earthquake
sequences well is merely a function of the data distribution.
Thus we cannot reject the null hypothesis that there is no
predictive value in the time-predictable model.

5. Testing the Slip-Predictable Model

[39] We follow a similar method as described in
sections 4.1–4.4 to test whether the slip-predictable model
better describes repeating earthquakes than a fixed slip
model. In the slip-predictable model, we expect the slip in
an earthquake to scale with time since the last event, i.e.,
releasing all the slip accumulated since the last event.
Therefore, if we plot the slip against the time since the last
event, we expect to see a positive trend. Examining the

Figure 7. Results of reshuffling experiments showing how likely each repeating earthquake sequence is
to appear to be fit by the time-predictable model simply as a result of its data distribution. All the
sequences in (a) Parkfield, (b) Japan, and (c) Taiwan are shown separately. The reshuffling experiments
using the different slip:moment assumptions are shown with three different colored lines. These results
indicate that 20–40% of the data would appear time-predictable even if there was no connection between
recurrence interval and slip.
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Parkfield repeating earthquake sequences, qualitatively it
appears that these sequences follow the predictions of the
slip-predictable model; many of the sequences appear to
have a fairly linear, positive trend (Figure 9a). The Japanese
and Taiwanese sequences, though, do not appear to be fit by
the slip-predictable model in a qualitative sense (Figures 9b
and 9c).
[40] Using cross-validation, we compare the predictions

of the slip-predictable model to those of the fixed slip
model described in section 2.3. We find that very few of

the sequences appear to be better described by the slip-
predictable model than the fixed slip model (Table 2).
The results for Japan and Taiwan are as we expect, they
do not appear to have a strong trend and thus are not
well described by the slip-predictable model. The results
in Parkfield, though, are surprising given that there is a
clear, positive trend for many of the repeating earthquake
sequences (Figure 9a). The ill fit of the slip-predictable
model likely arises from the strict definition of the slip-
predictable model that we use in this test. Specifically, we

Figure 8. Probability distributions of the number of sequences that would be randomly fit by the time-
predictable model for repeating earthquake sequences in (a–c) Parkfield, (d–f) Japan, and (g–i) Taiwan.
Each slip-moment distribution is plotted separately for each region. A dashed, vertical line indicates that
less than 5% of the data lies above/below the line, effectively forming a 90% confidence bound. For
Figure 8g, only an upper bound line is shown because the smallest possible number of sequences to be
fit by the time-predictable model is zero, and its probability is more than 10%, so there is no lower bound
using the method used for the other plots. In each panel, a vertical line of text indicating the number of
sequences observed to be fit by the time-predictable model is plotted such that it lies in the appropriate
location on the probability distribution. If this text falls outside either of the two 90% confidence bounds
(or above the 95% confidence bound in Figure 8g), we have 90% (or 95% in Figure 8g) confidence that
the observation is non-random. All of our observations fall within the 90% confidence bounds, such that
we cannot reject the null hypothesis that the fixed recurrence model better predicts the behavior of the
repeating events than the time-predictable model.
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require that the intercept of the line describing the rela-
tionship between slip and the recurrence interval equal zero,
as in equation (3) instead of equation (4). This gives the
slip-predictable model a physical meaning, i.e., when an
earthquake happens, it uses up the entire available slip
budget, such that if an earthquake occurs immediately after
the last one, it will be of zero size. This requirement means
that a positive slope, while a necessary condition for the slip-

predictable model, is not sufficient to ensure that a repeating
earthquake sequence is better described by it than a fixed slip
model. An example of how the slip-predictable model fails to
describe an individual sequence is shown in Figure 10 for
Parkfield repeating earthquake sequence 19. When we nor-
malize all the sequences and examine them together, we can
see that the broader population of the sequences do not have a
zero-intercept scaling in either a time- or slip-predictable sense
(Figure 4). Since it appears that slip does depend on inter-
event time in Parkfield but the repeating earthquakes are not
explained by the slip-predictable model in a strict sense, later
we explore the possibility that there is a relationship between
slip and recurrence time while allowing for a nonzero inter-
cept as in equation (4).
[41] We use the same reshuffling method described in

section 4.3 to determine how likely it is that any individual
sequence would be better fit by the slip-predictable model
just based on its data distribution. Very few sequences have
high probabilities of being randomly better fit by the slip-
predictable model (Figure 11). The maximum probability of
any sequence randomly being better fit by the slip-predict-
able model is approximately 21%, 39%, and 26% in Park-
field, Japan, and Taiwan respectively, with the average being
far lower. This is consistent with our observation of very few
sequences having lower prediction-errors for the slip-

Figure 9. The qualitative fit of the slip-predictable model
to all the repeating earthquake sequences examined in
(a) Parkfield, (b) Japan, and (c) Taiwan. Moment for each
event within an individual sequence is plotted against its
recurrence interval. The sequences are colored differently
so that they can be distinguished from each other. Lines con-
nect all the earthquakes within a sequence, but do not imply
the chronological ordering of the events. A sequence that is
fit by the slip-predictable model is expected to have a posi-
tive slope, i.e., slip would increase as the time since the last
event is increased. Moment of the events is used as a proxy
for slip, following the constant area assumption. Using other
moment-slip relationships will change the shape of the lines,
but not the trend or lack thereof, which is a qualitative mea-
sure of whether a sequence is time-predictable. Sequence 1
in Taiwan is removed because some of its repeats are very
short and including it in this plot would make it difficult to
see the other sequences on the same figure. Many of the
sequences in Parkfield have a consistent positive trend, indi-
cating that the slip-predictable model may be useful in
describing the behavior of these events. The sequences in
Japan and Taiwan do no appear to have a consistent trend,
suggesting that the slip-predictable model does not predict
the behavior of these events well.

Table 2. Number of Sequences That Appear to Be Slip-
Predictablea

Constant Area Constant Stress Drop Slip a M0
1/6

Parkfield 3/25 0/25 0/25
Japan 2/14 1/14 0/14
Taiwan 0/6 1/6 0/6

aThis table lists the fraction of the total number of sequences where cross-
validation indicates that the slip-predictable model better predicts the
behavior of the repeating earthquakes than the fixed slip model.
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predictable model than for a fixed slip model (Table 2). We
also note that as the exponent in the slip:moment relation-
ships decreases, the random likelihood of a sequence being
fit by the slip-predictable model also decreases (Figure 11).
This is also seen in the observed data (Table 2). This arises
because as the exponent decreases, the variability in the slip
estimates decreases as well, such that a mean will describe
the data increasingly well, while a slip-predictable model
will still need to keep a positive slope.
[42] As with the time-predictable model, the reshuffling

experiment is based upon the assumption that a data set that
is perfectly explained by the slip-predictable model would
rarely appear slip-predictable when reshuffled. We perform
the same test to verify if this is the case, again using a log-
normal distribution, this time for recurrence times with a
coefficient of variation of 0.30 (the coefficient of variation of
recurrence times in the data). The probability of false posi-
tives for reshuffled data that was formerly slip-predictable
is low (0–22%), validating the assumption that this experi-
ment rests upon. As with time-predictability, sequences with
fewer events are more likely to appear slip-predictable.
[43] We perform the same probability-combination exer-

cise described in section 4.4 to determine the probability that
the number of sequences that we observed to be fit by the
slip-predictable model arose out of random chance. Explor-
ing the probability distributions, we only find that two of the
nine region/slip-moment combinations falls outside of the
90% confidence bounds (Figure 12). This is using the con-
stant area assumption for the repeats in Parkfield and the
constant stress drop assumption for Taiwan. This suggests
that there may be some real fit of the slip-predictable model,
in that we have 2 of the 9 combinations falling outside 90%

confidence bounds. Based on random chance and 90%
confidence bounds, we would expect one combination to fall
outside these bounds. Given that we would expect that 1 of
the combinations to fall outside the confidence bounds,
having a second should not be particularly surprising as
well. Additionally the number of sequences that are well
described by these models is very low, 3/25 sequences and
1/6 sequences, so even if there is a real fit, it is of very little
utility since it describes only a few sequences well.

6. Testing the Two-Parameter Time- and
Slip-Predictable Models

6.1. Two-Parameter Time-Predictable Model

[44] We follow the same methodology as above to test
whether using a two-parameter time-predictable model bet-
ter describes the behavior of the repeating earthquakes in
Taiwan, Japan, or Parkfield. We first compare the cross-
validation prediction-errors of the perfectly periodic model
to those of the two-parameter time-predictable model. Using
this test, we find that fewer sequences appear to be fit by the
time-predictable model than when using the strictly defined
one-parameter model (Table 3). At first glance, this might
seem rather peculiar in that a two-parameter model will by
definition fit data better than a one-parameter model. While
this may be the case, we are examining the predictive power
of these models using cross-validation, and not the fit to all
of the data. Therefore, it is perfectly possible that the one-
parameter time-predictable model would better predict the
behavior of a system than the two-parameter version as we
see here. Because we are better fitting the initial data and
more poorly predicting the omitted data, we can be quite
confident that the size of an earthquake tells you nothing
about the recurrence interval required until the next event.
[45] As with previous earthquake data, we reshuffle the

repeating earthquake data to determine the likelihood that
each of these sequences would randomly appear to be fit
by the time-predictable model based upon the data distri-
bution. We find significantly lower likelihoods of sequences
randomly being better described by a two-parameter time-
predictable model (Figure 13). The peak likelihood of any
of the sequences being randomly time-predictable in a two-
parameter sense is 22–28% for the three regions. Given the
small number of sequences observed to be fit by the time-
predictable model in a two-parameter sense (Table 3), it
seems very likely that what we are observing is very likely
just a result of random data.
[46] We next explore if the number of sequences whose

behavior is better predicted by the two-parameter model is
likely a result of random chance. To this end, we compute
the probability distributions for the two-parameter time-
predictable model as applied to each region and each slip
assumption. For the nine different combinations, each falls
within a 90% confidence bound describing random behav-
ior. Based on this, the time-predictability (or lack thereof)
we observe for the repeating earthquake sequences using the
two-parameter time-predictable model is likely a function of
random chance.

6.2. Two-Parameter Slip-Predictable Model

[47] Following the same methodology as used for other
models, we compute the number of sequences whose

Figure 10. Example of how the slip-predictable model may
be failing for the Parkfield repeating earthquake sequences.
There appears to be a clear scaling between moment and
the recurrence interval, where the events get larger with lon-
ger recurrence intervals. A one-parameter slip-predictable
model does not fit the data well because it has to go through
the origin, while a constant moment explains the small vari-
ability much better. Using a two-parameter slip-predictable
model fits the data better than either of two other models.
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behavior is better predicted by two-parameter slip predict-
able model than by the fixed slip model. We find that very
few sequences are better predicted by the two-parameter
slip-predictable model in both Taiwan and Japan, but 14 or
15 of the 25 repeating earthquakes in Parkfield are better
described by the two-parameter slip-predictable model
depending on the slip-moment assumption (Table 4). This
should not be especially surprising given that many of the
Parkfield repeating earthquake sequences appear to have a
positive correlation between slip and the preceding recur-
rence interval (Figure 9a).
[48] Performing random reshuffles of the sequences shows

that none of the sequences are particularly likely to appear
slip-predictable based on their prediction-errors (Figure 14).
Most of the sequences are randomly better described by the
two-parameter slip-predictable model for 10–30% of the
reshuffles. Given these low probabilities, it seems likely that
our observations for the sequences in Japan and Taiwan are

simply a result of random chance. In contrast, it is unlikely
that our observation of 14 or 15 sequences being better
described by a two-parameter slip-predictable model in
Parkfield is a result of random chance.
[49] Exploring the probability that the number of sequen-

ces we observe to be better predicted by the two-parameter
slip-predictable model we find that three of the nine slip/
region combinations fall outside the 90% confidence bounds
(Figure 15). The sequences that fall out of the 90% bounds
are all the slip-moment combinations for the Parkfield
repeating earthquakes. This implies that our observation of
these sequences being fit by the slip-predictable model is
very unlikely to be random. If we examine the actual like-
lihoods of 14 or more sequences being fit by the slip-
predictable model, the probability that our observation is
non-random ranges between 99.34 and 99.38% depending
upon the slip assumption. The probability that all three of
these would occur is approximately 2.6 � 10�5%. We do

Figure 11. Results of reshuffling experiments showing how likely each repeating earthquake sequence is
to appear to be fit by the slip-predictable model simply as a function of its data distribution. All the
sequences in (a) Parkfield, (b) Japan, and (c) Taiwan are shown separately. The reshuffling experiments
using the different slip:moment assumptions are shown with three different colored lines. This data indi-
cates that it is highly unlikely that these sequences would appear to be slip-predictable simply based upon
their data distribution. Any observed fit of the slip-predictable model is likely to be real.
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note that the probabilities of the random occurrence of any
individual sequence being better fit by the slip-predictable
model is near-constant over all of the slip assumptions in all
the regions. This implies that we cannot consider the likeli-
hood of the slip-assumptions independently, although we
still can say with 99.34% confidence that the observation of
the Parkfield repeating earthquakes being fit by the slip-
predictable model is non-random.
[50] In hopes that this predictability could be used else-

where we try to distinguish the two-parameter slip-predict-
able repeating earthquake sequences from those that are not.
We try to distinguish them by means of epicentral location,

Figure 12. Probability distributions of the number of sequences that would be randomly fit by the slip-
predictable model for repeating earthquake sequences in (a–c) Parkfield, (d–f ) Japan, and (g–i) Taiwan.
Each slip-moment distribution is plotted separately for each region. A dashed, vertical line indicates that
less than 5% of the data lies above the line, effectively forming a 95% confidence bound. In each panel, a
vertical line of text indicating the number of sequences observed to be fit by the time-predictable model is
plotted such that it lies in the appropriate location on the probability distribution. If this text falls above the
95% confidence bound, we have 95% confidence that the observation is non-random. Two of the nine
combinations (constant area assumption for Parkfield and the constant stress drop assumption for Taiwan)
fall outside the 95% confidence bounds, such that the utility of the slip-predictable model in these cases
are likely real at the 95% confidence level. While this may be real, the incredibly low number of sequences
observed to be fit by the slip-predictable model indicates that these models are of little use, since they can-
not be applied widely.

Table 3. Number of Sequences That Appear to Be Time-Predictable
(Two-Parameter)a

Constant Area Constant Stress Drop Slip a M0
1/6

Parkfield 3/25 3/25 3/25
Japan 1/14 1/14 1/14
Taiwan 0/6 0/6 0/6

aThis table lists the fraction of the total number of sequences where cross-
validation indicates that the two-parameter time-predictable model better
predicts the behavior of the repeating earthquakes than the perfectly
periodic model.

RUBINSTEIN ET AL.: EARTHQUAKES ARE NOT TIME/SLIP PREDICTABLE B02306B02306

16 of 23



depth, mean recurrence, number of events, and average
moment (Figures 5b and 5c; Data Set S1 in auxiliary
material). Unfortunately, none of these criteria can be used
to distinguish those sequences that are better described by
the two-parameter slip-predictable model from those that are
better described by a constant slip model. Given this, it
seems unlikely that we will be able to identify sequences that
behave in a two-parameter slip-predictable manner.

7. Discussion and Conclusions

7.1. Fixed Recurrence and Slip Models Better Predict
Repeating Earthquake Behavior Than the Time- and
Slip-Predictable Models

[51] With the aim of elucidating whether the time- and
slip-predictable models are appropriate to describe the
recurrence and slip-behaviors of earthquakes, we have ana-
lyzed natural repeating earthquakes. We examine these
earthquakes based on the premise that they more closely fit

key assumptions of the time- and slip-predictable models
(constant loading rate and highly similar ruptures) than do
typical earthquakes. Strictly defined, these models have less
predictive power than models that predict the subsequent
recurrence interval or slip as the mean of all the other events
in the sequence. Examining all the data using both the slip-
predictable and time-predictable models we find that the data

Figure 13. Results of reshuffling experiments showing how likely each repeating earthquake sequence is
to appear to be fit by the time-predictable model with a two-parameter model simply as a function of its
data distribution. All the sequences in (a) Parkfield, (b) Japan, and (c) Taiwan are shown separately.
The reshuffling experiments using the different slip:moment assumptions are shown with three different
colored lines. The data from all three regions has low likelihood (<30%) that it will be well predicted
by the two-parameter time-predictable model for randomly distributed data.

Table 4. Number of Sequences That Appear to Be Slip-Predictable
(Two-Parameter)a

Constant Area Constant Stress Drop Slip a M0
1/6

Parkfield 14/25 15/25 14/25
Japan 3/14 3/14 3/14
Taiwan 2/6 2/6 2/6

aThis table lists the fraction of the total number of sequences where
cross-validation indicates that the two-parameter slip-predictable model
better predicts the behavior of the repeating earthquakes than the fixed
slip model.
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looks much more like it is scattered around a mean than
following along a line with a constant slope and a y-intercept
of 0 (Figure 4). More than 50% of the data falls outside 2s
bounds for the slip-predictable model and more than 60% of
the data falls outside the 2s bounds for the time-predictable
model. Further tests show that those cases when the time-
and slip-predictable models do outperform the fixed recur-
rence and fixed slip models, respectively, it is likely the
result of random chance. In a strict sense, the results of our
study indicate that we cannot rule out the null hypothesis
that the repeating events are better described by fixed
recurrence and slip models than they are the time- and slip-
predictable models. While this means that we cannot strictly
say that the time and slip-predictable models are inferior,
given that we cannot explicitly show that they are superior
using a data set of many different repeating earthquake
sequences, we can say that if there is any superior value to

the time- and slip-predictable models it is very subtle or
infrequent so it is of little or no value for predictions.
[52] Repeating earthquake sequences are the earthquake

sequences we expect should best fit the assumptions of the
time- and slip-predictable models, yet these models poorly
explain them. Given this, we conclude that the time- and slip-
predictable models, as defined here, have less event-to-event
predictive power than simpler fixed recurrence and slip
models for any natural earthquakes. Further evidence to this
point is provided by the companion manuscript [Rubinstein
et al., 2012] which details evidence that laboratory gener-
ated earthquakes are better explained by constant recurrence
and slip models than the time- and slip-predictable models.
[53] Having demonstrated the time- and slip-predictable

models cannot be used to adequately predict the behavior
of repeating earthquakes, we also explore whether there is
useful predictive information in the relationships between

Figure 14. Results of reshuffling experiments showing how likely each repeating earthquake sequence
is to appear to be fit by the slip-predictable model with a two-parameter model simply as a function of
its data distribution. All the sequences in (a) Parkfield, (b) Japan, and (c) Taiwan are shown separately.
The reshuffling experiments using the different slip:moment assumptions are shown with three differ-
ent colored lines. Most sequences are fairly unlikely to be explained well by the two-parameter slip-
predictable model if their recurrence time and slip relationship is shuffled. Thus any slip-predictability
observed in the data is likely real.
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recurrence interval and slip by adding an additional param-
eter to the slip:recurrence-interval relationship. Some have
argued that models like this do offer predictive power for
earthquakes [e.g., Papazachos, 1989, 1992; Papazachos et al.,
1994]. This has also been observed for repeating earthquakes
during aftershock sequences [e.g., Chen et al., 2010a; Peng
et al., 2005; Marone et al., 1995; Vidale et al., 1994]. The
applicability of aftershock studies is unclear because loading
rates are almost certainly variable during aftershock sequences.
Our analysis of the repeating earthquake data indicates that
there is a slip-predictable sense scaling for repeating earth-
quakes in Parkfield and not elsewhere. We find no time-
predictable sense scaling. Unfortunately, we have not found a
procedure for identifying sequences that are well described
by the two-parameter slip-predictable model in Parkfield or
in the other regions. This means that while it appears that
sometimes there is additional two-parameter slip-predictable
information in repeating earthquakes, this model is unusable
because we have no way of knowing which earthquakes are
well explained by it.
[54] It is unclear as to why the Parkfield sequences are

better explained by a two parameter slip-predictable model
those elsewhere are not. One possibility is that repeating
earthquakes are only slip-predictable in strike-slip regions.

This scaling has previously been observed on strike-slip
faults in California [Chen et al., 2010a; Peng et al., 2005;
Marone et al., 1995; Vidale et al., 1994], but no study prior to
this has studied them elsewhere. Another possible explana-
tion as to why we observe slip-predictable type scaling in
Parkfield and not elsewhere is that the repeats in each region
are slightly different than each other. In this study, the
repeating earthquakes sequences are defined differently from
region to region, thus there may be some sequences that
would be a repeating earthquake sequence in one region
but would not be in another. The slip rate may also be more
stable in Parkfield than in Taiwan and Japan, thus allowing
it to appear slip-predictable in a two-parameter sense while
Taiwan and Japan would not appear slip-predictable. Cer-
tainly slip-rates and seismicity rates are higher in Taiwan
and Japan than in Parkfield, so this may result in larger
temporal variations in loading rates and thus a lack of slip-
predictability.

7.2. Reasons Why the Fixed Recurrence and Slip
Models Better Predict the Behavior of Repeating
Earthquakes

[55] In this section we explore why the predictions of
the time- and slip-predictable models for the behavior of

Figure 15. Probability distributions of the number of sequences that would be randomly fit by the two-
parameter slip-predictable for the repeating earthquake sequences. Only the three region/slip:moment
combinations where the observation falls out of the 90% confidence limits are shown, otherwise figure
description is the same as Figure 10. All of these combinations are for Parkfield and two-parameter
slip-predictability. This strongly suggests that the slip-predictable scaling observed in Parkfield is real.
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repeating earthquakes are worse than those of the fixed
recurrence and fixed slip models. We first explore possible
non-tectonic reasons and subsequently explore physical
reasons why the time- and slip-predictable models do not
improve on the predictions of fixed slip and fixed recurrence
models.
7.2.1. Non-tectonic Reasons
[56] One possible reason that repeating earthquake

behavior is better explained by fixed recurrence and fixed
slip models is that our definition of repeating earthquakes is
not adequate. To our knowledge there is no agreed upon
definition for repeating earthquakes. Even in this study we
mix definitions from region to region. The variability of our
definitions of repeating earthquakes may certainly explain
variable behavior from region to region, but cannot explain
the general absence of a fit by the time- and slip-predictable
models. It is possible, though, that we are not examining
“true” repeating earthquakes where the slip areas overlap, as
there is no way to delineate with 100% certainty that all the
events in a repeating earthquake sequence are the same
event. If we are not examining “true” repeats, this would
mean that the time- and slip-predictable models would not
hold because we are not examining a point process. While it
is a possibility that we are not examining perfect repeats of
an earthquake sequence, the rigorous requirements that we
apply strongly suggest that we are examining perfect repeats.
Furthermore, if we are not examining perfect repeats, it
seems highly unlikely that if the time- and slip-predictable
models fail for near-perfect repeats they would work for the
larger and less similar earthquakes that we are truly inter-
ested in describing.
[57] Another possible non-tectonic explanation as to why

fixed slip and fixed recurrence models better predict
repeating earthquake behavior is that our definition of
aftershocks is too permissive in that some of the sequences
we are analyzing may contain aftershocks. This would skew
our observations due to increased seismicity rates following
a large earthquake. As noted in section 3, we have reason to
believe that the Wells and Coppersmith [1994] definition of
aftershocks that we use is reasonable, but it is certainly
possible that it could miss some aftershocks. One way we
may miss aftershocks is that we only consider main shocks
of M ≥ 6.0. This means that any changes caused by earth-
quakes M < 6.0 are assumed to part of the background rate,
which will skew its true value. All earthquakes have after-
shocks sequences of varying duration and vigor, meaning
that they may cause accelerations or decelerations of
repeating earthquakes [Lengliné and Marsan, 2009]. Earth-
quakes as small as magnitude M� = 4.0 have been shown to
change the behavior of repeating earthquakes [Ellsworth,
1995; Chen et al., 2010b]. It is unclear how significant this
effect is, but defining aftershock zones becomes a larger and
larger problem as the cutoff magnitude is reduced, making a
low cutoff magnitude an unwieldy problem.
7.2.2. Physical Reasons
[58] While the definition-based reasons above might

explain why repeating earthquake behavior is better pre-
dicted by fixed recurrence and slip models than the time-
and slip-predictable models, it is far more likely that there
are physical reasons as to why these models do not work.
Fundamentally, we believe these models rely on assumptions

that are too simple to describe the complex behavior of the
earth.
[59] The key assumption underlying both of the models

that we are testing is that there is a long-term constant
loading rate. Certainly, this is an unfair assumption, as short-
term creep events and slow-earthquakes have been observed
globally and nearby to every one of our study regions [e.g.,
Liu et al., 2009; Ozawa et al., 2003; Kawasaki et al., 2001;
Langbein et al., 1999; Murray and Segall, 2005]. Since
loading rates are variable, the time- and slip-predictable
models are bound to fail. As might be expected, variable
loading rates have been seen to change seismicity rates [e.g.,
Segall et al., 2006], including for repeating earthquakes
[Nadeau and McEvily, 1999; Ellsworth, 1995]. Notably,
there was an accelerated creep event in the Parkfield area
from 1993 to 1998 [Langbein et al., 1999; Gao et al., 2000;
Murray and Segall, 2005]. Nadeau and McEvily [1999]
determined that the moment rate of some repeating events
accelerated along with this creep event. Clearly loading rate
has an effect on repeating earthquakes in one of our study
regions so it is important to take into account. We note,
though, that for the repeating earthquakes that we study in
Parkfield, we do not identify any change in moment rate at
the time of this creep event. That repeating events do appear
to accelerate with creep rate (and thus a likely loading rate)
suggests that earthquakes may be following the elastic
rebound model, but a constant loading rate assumption is
overly simplistic.
[60] The other key assumptions of the time- and slip-

predictable models are likely too simplistic as well. The
time-predictable model assumes that there is a constant fail-
ure threshold, i.e., once a threshold stress is reached, failure
will happen. Laboratory and theoretical work has shown that
rocks do not always fail at the same stress [e.g., Dieterich,
1979; Karner and Marone, 2001], again implying that the
time-predictable model is relying on an assumption that is too
strict. The slip-predictable model relies on the assumption
that the entire slip deficit accumulated since the last earth-
quake will be released in the subsequent earthquake. Simi-
larly, it seems likely that some slip may not be released in the
subsequent event or alternatively released in aseismic pro-
cesses, making it an unfair assumption as well.
[61] In addition to assuming that there is a constant loading

rate for seismic slip, the time- and slip-predictable models are
built upon the simplifying assumption that the repeating
earthquake studied releases all of the slip in the region. Pre-
vious studies of repeating earthquakes have argued this [e.g.,
Nadeau and McEvily, 1999]. For the sequences that we
identify as being two-parameter slip-predictable, i.e., the
most likely to have a constant loading rate, we test whether
they could accommodate all of the slip on the San Andreas.
We test whether the repeats could meet the slip rate of the
fault using (1) constant stress drops of 3 MPa and 10 MPa,
consistent with Imanishi and Ellsworth [2006] and (2) stress
drops derived from Nadeau and Johnson [1998] that vary
from event to event and sequence to sequence ranging from
140 MPa to 540 MPa. With this range of parameters, we
compute slip rates to vary between 0 mm/yr and 11.7 mm/yr,
well below the geologically estimated rate of 20–32 mm/yr
[Toke et al., 2011]. Given our results, the repeats that we’re
observing likely are not accommodating all the slip for a
given location on the fault laterally. One way that this can be
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accomplished is with multiple, active, parallel strands of the
fault that accommodate slip. This has recently been seen in
the SAFOD borehole into the Parkfield segment of the San
Andreas Fault [Zoback et al., 2010]. It seems probable that
the slip partitioning from strand to strand likely varies with
time, such that it is likely that the assumption of a constant
loading rate does not hold.
[62] One need not accommodate all of the slip in seis-

mic processes for the assumptions of the time- and slip-
predictable models to work. They simply assume a constant
loading rate, which allows for a constant total loading rate
and a constant percentage of the slip that is accumulated in
seismic events (as opposed to aseismic events). For repeat-
ing earthquakes, in particular, this assumption seems unrea-
sonable. Every laboratory and theoretical study that has
attempted to physically model the conditions required to
produce repeating earthquakes [Chen and Lapusta, 2009;
Beeler et al., 2001; Sammis and Rice, 2001; Anooshehpoor
and Brune, 2001; Johnson and Nadeau, 2002] has argued
that repeating earthquake sequences are taking place near or
in regions that primarily accommodate slip aseismically. It
seems highly improbable that the seismic:aseismic slip ratio
stays constant over many earthquake cycles [Chen et al.,
2010a; Chen and Lapusta, 2009], making the seismic load-
ing rate variable (as opposed to the total loading rate). Even
in the case of a constant total loading rate, a variable seismic
loading rate would make the time- and slip-predictable
models unusable. A nonlinear evolution of fault strength
could also produce a variable slip deficit, forcing the slip-
predictable model to fail. The time- and slip-predictable
models expect that fault strength evolves linearly as a
function of time, which is contrary to laboratory observa-
tions that show that it evolves in a logarithmic fashion,
increasing rapidly at first [Dieterich, 1972]. This would
produce larger than predicted slip for events shortly after a
previous event. We observe this behavior for the Parkfield
sequences. The fact that repeating earthquakes occur in
regions where a significant portion of the slip is accom-
modated aseismically may mean that they are not appro-
priate to study time- and slip-predictability with these
events, as we argued earlier.

7.3. What Are Repeating Earthquakes?

[63] Given that repeating earthquakes do not appear to be
predictable from event-to-event by either the time- or slip-
predictable models, we are still left to explain the physical
processes underlying these events. These sequences are
highly regular in both recurrence interval and slip. In essence
they are time- and slip-predictable in that we can use their
regularity to predict the size and timing of the next event to
be the mean of these values of previous events with very low
residuals.
[64] To the resolution of modern relocation techniques

they are occurring in the same place, and their highly similar
waveforms indicate that their slip sense is very consistent.
They also appear to be time- and slip-predictable in a long-
term sense, in that their cumulative moment as a function of
time looks quite linear (this study) [Nadeau and Johnson,
1998]. One possible model that would fit these observa-
tions is that repeating earthquakes lie in a region of fixed (or
near-fixed) size that represents a partially stuck patch within
a larger region of predominantly aseismic slip. The partially

stuck patch accommodates slip both seismically and aseis-
mically [Beeler et al., 2001; Chen and Lapusta, 2009], but
the ratio between them is not constant from event to event.
Assuming this ratio varies about a mean, the repeating
earthquake sequences would appear to have a linear or near-
linear accumulation of slip as a function of time (i.e., appear
time- and slip-predictable in the long term).

[65] Acknowledgments. The authors thank AndyMichael and Jeanne
Hardebeck for many insightful discussions from which much of this work
spawned. Their gracious assistance while faced with innumerable statistics
questions is greatly appreciated. This work benefited from conversations
with Nadia Lapusta, Zhigang Peng, Ned Field, Jeremy Zechar, and J. Ole
Kaven. Comments from Ross Stein and Jeanne Hardebeck significantly
improved an earlier version of this manuscript. Insightful reviews by Roland
Burgmann and an anonymous reviewer improved this manuscript.

References
Anooshehpoor, A., and J. N. Brune (2001), Quasi-static slip-rate shielding
by locked and creeping zones as an explanation for small repeating earth-
quakes at Parkfield, Bull. Seismol. Soc. Am., 91, 401–403, doi:10.1785/
0120000105.

Aron, A., and J. L. Hardebeck (2009), Seismicity rate changes along
the Central California Coast due to stress changes from the 2003 M 6.5
San Simeon and 2004 M 6.0 Parkfield earthquakes, Bull. Seismol. Soc.
Am., 99, 2280–2292, doi:10.1785/0120080239.

Bakun, W., and T. McEvilly (1984), Recurrence models and Parkfield,
California, earthquakes, J. Geophys. Res., 89, 3051–3058.

Beeler, N., D. Lockner, and S. Hickman (2001), A simple stick-slip and
creep-slip model for repeating earthquakes and its implication for micro-
earthquakes at Parkfield, Bull. Seismol. Soc. Am., 91, 1797–1804,
doi:10.1785/0120000096.

Bufe, C. G., P. W. Harsh, and R. O. Burford (1977), Steady-state seismic
slip–precise recurrence model, Geophys. Res. Lett., 4(2), 91–94,
doi:10.1029/GL004i002p00091.

Chen, K. H., R. M. Nadeau, and R.-J. Rau (2008), Characteristic repeating
earthquakes in an arc-continent collision boundary zone: The Chihshang
fault of Eastern Taiwan, Earth Planet. Sci. Lett., 276, 262–272,
doi:10.1016/j.epsl.2008.09.021.

Chen, K. H., R.-J. Rau, and J.-C. Hu (2009), Variability of repeating earth-
quake behavior along the Longitudinal Valley fault zone of Easter
Taiwan, J. Geophys. Res., 114, B05306, doi:10.1029/2007JB005518.

Chen, K. H., R. Burgmann, R. M. Nadeau, T. Chen, and N. Lapusta
(2010a), Postseismic variations in seismic moment and recurrence inter-
val of repeating earthquakes, Earth Planet. Sci. Lett., 299, 118–125,
doi:10.1016/j.epsl.2010.08.027.

Chen, K. H., R. Burgmann, and R. M. Nadeau (2010b), Triggering effect of
M 4–5 earthquakes on the earthquake cycle of repeating events at Park-
field, California, Bull. Seismol. Soc. Am., 100, 522–531, doi:101.1785/
0120080369.

Chen, T., and N. Lapusta (2009), Scaling of small repeating earthquakes
explained by interaction of seismic and aseismic slip in a rate and state
fault model, J. Geophys. Res., 114, B01311, doi:10.1029/2008JB005749.

Cornell, C. A., and S. R. Winterstein (1988), Temporal and magnitude
dependence in earthquake recurrence models, Bull. Seismol. Soc. Am.,
78, 1522–1537.

Davis, P. M., D. D. Jackson, and Y. Y. Kagan (1989), The longer it has
been since the last earthquake longer the expected time till the next?, Bull.
Seismol. Soc. Am., 79, 1439–1456.

Dieterich, J. H. (1972), Time-dependent friction in rocks, J. Geophys. Res.,
77, 3690–3697, doi:10.1029/JB077i020p03690.

Dieterich, J. H. (1979), Modeling of rock friction: 1. Experimental results
and constitutive equations, J. Geophys. Res., 84, 2161–2168,
doi:10.1029/JB084iB05p02161.

Dreger, D. S., R. M. Nadeau, T. Taira, and A. Kim (2011), Finite source
parameters and scaling of repeating and non-repeating earthquakes at
Parkfield, Seismol. Res. Lett., 82, 323.

Efron, B. (1979), Bootstrap methods: Another look at the jackknife, Ann.
Stat., 7, 1–26, doi:10.1214/aos/1176344552.

Ellsworth, W. L. (1995), Characteristic earthquakes an long-term earth-
quake forecasts: Implications of central California seismicity, in Urban
Disaster Mitigation: The Role of Science and Technology, edited by
F. Y. Cheng and M. S. Sheu, pp. 1–14, Elsevier Sci. Ltd., Oxford, U. K.,
doi:10.1016/B978-008041920-6/50007-5.

Fréchet, J. (1985), Seismogenèse et doublets sismiques, thèse d’Etat,
207 pp., Univ, Sci, ed Méd. de Grenoble, Grenoble, France.

RUBINSTEIN ET AL.: EARTHQUAKES ARE NOT TIME/SLIP PREDICTABLE B02306B02306

21 of 23



Gao, S. S., P. G. Silver, and A. T. Linde (2000), Analysis of deformation
data at Parkfield California: Detection of a long-term strain transient,
J. Geophys. Res., 105, 2955–2967, doi:10.1029/1999JB900383.

Gilbert, G. K. (1884), A theory of the earthquakes of the Great Basin, with a
practical application, Am. J. Sci., 27(157), 49–53.

Hagiwara, Y. (1974), Probability of earthquake occurrence as obtained
from a Weibull distribution analysis of crustal strain, Tectonophysics,
23, 313–318, doi:10.1016/0040-1951(74)90030-4.

Hanks, T., and H. Kanamori (1979), Amoment magnitude scale, J. Geophys.
Res., 84, 2348–2350.

Hardebeck, J. L., et al. (2004), Preliminary report on the 22 December
2003, M 6.5 San Simeon, California earthquake, Seismol. Res. Lett., 75,
155–172, doi:10.1785/gssrl.75.2.155.

Huang, W.-J., K. M. Johnson, J. Fukuda, and S.-B. Yu (2010), Insights into
active tectonics of eastern Taiwan from analyses of geodetic and geologic
data, J. Geophys. Res., 115, B03413, doi:10.1029/2008JB006208.

Imanishi, K., and W. L. Ellsworth (2006), Source scaling relationships of
microearthquakes at Parkfield, CA, determined using the SAFOD pilot
hole seismic array, in Earthquakes: Radiated Energy and the Physics of
Faulting, Geophys. Monogr. Ser., vol. 170, edited by R. E. Abercrombie
et al., pp. 81–90, AGU, Washington, D. C., doi:10.1029/170GM10.

Johnson, L. R., and R. M. Nadeau (2002), Asperity model of an earthquake:
Static problem, Bull. Seismol. Soc. Am., 92, 672–686, doi:10.1785/
0120000282.

Kagan, Y. Y. (2002), Aftershock zone scaling, Bull. Seismol. Soc. Am., 92,
641–655, doi:10.1785/0120010172.

Kagan, Y. Y., and D. D. Jackson (1991), Long-term earthquake clustering,
Geophys. J. Int., 104, 117–134, doi:10.1111/j.1365-246X.1991.tb02498.x.

Karner, S. L., and C. Marone (2001), Frictional restrengthening in simu-
lated fault gouge: Effect of shear load perturbations, J. Geophys. Res.,
106, 19,319–19,337, doi:10.1029/2001JB000263.

Kawasaki, I., Y. Asai, and Y. Tamura (2001), Space-time distribution of inter-
plate moment release including slow earthquakes and the seismo-geodetic
coupling in the Sanriku-oki region along the Japan trench, Tectonophysics,
330, 267–283, doi:10.1016/S0040-1951(00)00245-6.

Konca, A. O., et al. (2008), Partial rupture of a locked patch of the Sumatra
megathrust during the 2007 earthquake sequence, Nature, 456, 631–635,
doi:10.1038/nature07572.

Konstantinou, K. I., G. A. Papadopoulos, A. Fokaefs, and K. Orphanogiannaki
(2005), Empirical relationships between aftershock area dimensions and
magnitude for earthquakes in the Mediterranean Sea region, Tectonophysics,
403, 95–115, doi:10.1016/j.tecto.2005.04.001.

Langbein, J., R. L. Gwyther, R. H. G. Hart, and M. T. Gladwin (1999), Slip-
rate increase at Parkfield in 1993 detected by high-precision EDM and
borehole tensor strainmeters, Geophys. Res. Lett., 26, 2529–2532,
doi:10.1029/1999GL900557.

Langbein, J., J. R. Murray, and H. A. Snyder (2006), Coseismic and initial
postseismic deformation from the 2004 Parkfield, California, earthquake,
observed by Global Positioning System, electronic distance meter, creep-
meters, and borehole strainmeters, Bull. Seismol. Soc. Am., 96, S304–S320,
doi:10.1785/0120050823.

Lengliné, O., and D. Marsan (2009), Inferring the coseismic and postseis-
mic stress changes caused by the 2004 Mw = 6 Parkfield earthquake from
variations of recurrence times of microearthquakes, J. Geophys. Res.,
114, B10303, doi:10.1029/2008JB006118.

Liu, C., A. T. Linde, and I. S. Sacks (2009), Slow earthquakes triggered by
typhoons, Nature, 459, 833–836, doi:10.1038/nature08042.

Marone, C., J. E. Vidale, and W. L. Ellsworth (1995), Fault healing inferred
from time dependent variations in source properties of repeating earth-
quakes, Geophys. Res. Lett., 22, 3095–3098, doi:10.1029/95GL03076.

Matthews, M. V., W. L. Ellsworth, and P. A. Reasenberg (2002),
A Brownian model for recurrent earthquakes, Bull. Seismol. Soc.
Am., 92, 2233–2250, doi:10.1785/0120010267.

Meng, X., Z. Peng, and J. L. Hardebeck (2010), Detecting missing earth-
quakes on the Parkfield section of the San Andreas Fault following the
2003 Mw6.5 San Simeon earthquake, Abstract S43D–08 presented at
2010 Fall Meeting, AGU, San Francisco, Calif., 13–17 Dec.

Mulargia, F., and P. Gasperini (1995), Evaluation of the applicability of the
time- and slip-predictable earthquake recurrence models to Italian seis-
micity, Geophys. J. Int., 120, 453–473, doi:10.1111/j.1365-246X.1995.
tb01832.x.

Murray, J., and J. Langbein (2006), Slip on the San Andreas Fault at Park-
field, California, over two earthquake cycles, and the implications for
seismic hazard, Bull. Seismol. Soc. Am., 96, S283–S303, doi:10.1785/
0120050820.

Murray, J., and P. Segall (2002), Testing time-predictable earthquake recur-
rence by direct measurement of strain accumulation and release, Nature,
419, 287–291, doi:10.1038/nature00984.

Murray, J., and P. Segall (2005), Spatiotemporal evolution of a transient slip
event on the San Andreas Fault near Parkfield, California, J. Geophys.
Res., 110, B09407, doi:10.1029/2005JB003651.

Nadeau, R. M. and L. R. Johnson (1998), Seismological studies at Parkfield
VI: Moment release rates and estimates of source parameters for small
repeating earthquakes, Bull. Seismol. Soc. Am., 88, 790–814.

Nadeau, R. M., and T. V. McEvily (1999), Fault slip rates at depth from
recurrence intervals of repeating microearthquakes, Science, 285, 718–721,
doi:10.1126/science.285.5428.718.

Nishenko, S. P., and R. Buland (1987), A generic recurrence interval distri-
bution for earthquake forecasting, Bull. Seismol. Soc. Am., 77, 1382–1399.

Okada, M., H. Takayama, F. Hirose and N. Uchida (2007), A prior distribu-
tion of the parameters in renewal model with lognormal distribution used
for estimating the probability of recurrent earthquakes (in Japanese with
English abstract), J. Seismol. Soc. Jpn., 60, 85–1000.

Ozawa, S., S. Miyazaki, Y. Hatanaka, T. Imakiire, M. Kaidzu, andM.Murakami
(2003), Characteristic silent earthquakes in the eastern part of the Boso
peninsula, central Japan, Geophys. Res. Lett., 30(6), 1283, doi:10.1029/
2002GL016665.

Pacheco, J. F., L. R. Sykes, and C. H. Scholz (1993), Nature of seismic cou-
pling along simple plate boundaries of the subduction type, J. Geophys.
Res., 98, 14,133–14,159, doi:10.1029/93JB00349.

Papadimitriou, E. E., C. B. Papazachos, and T. M. Tsapanos (2001), Test
and application of the time- and magnitude predictable-model to the inter-
mediate and deep focus earthquakes in the subduction zones of the circum-
Pacific belt, Tectonophysics, 330, 45–68, doi:10.1016/S0040-1951(00)
00218-3.

Papazachos, B. C. (1989), A Time-predictable model for earthquake gener-
ation in Greece, Bull. Seismol. Soc. Am., 79, 77–84.

Papazachos, B. C. (1992), A time- and magnitude-predictable model
for generation of shallow earthquakes in the Aegean area, Pure Appl.
Geophys., 138, 287–308, doi:10.1007/BF00878900.

Papazachos, B. C., E. E. Papadimitriou, G. F. Karakaisis, and T. H. M.
Tsapanos (1994), An application of the time- and magnitude-predictable
model for the long-term prediction of strong shallow earthquakes in the
Japan area, Bull. Seismol. Soc. Am., 84, 426–437.

Papazachos, C. B., and E. E. Papadimitriou (1997), Evaluation of the global
applicability of the regional time- and magnitude-predictable seismicity
model, Bull. Seismol. Soc. Am., 87, 799–808.

Peng, Z., J. E. Vidale, C. Marone, and A. Rubin (2005), Systematic variations
in recurrence interval and moment of repeating aftershocks, Geophys. Res.
Lett., 32, L15301, doi:10.1029/2005GL022626.

Peterson, E. T., and T. Seno (1984), Factors affecting seismic moment
release rates in subduction zones, J. Geophys. Res., 89, 10,233–10,248,
doi:10.1029/JB089iB12p10233.

Poupinet, G., W. L. Ellsworth, and J. Frechet (1984), Monitoring velocity
variations in the crust using earthquake doublets: An application to the
Calaveras Fault, California, J. Geophys. Res., 89, 5719–5731,
doi:10.1029/JB089iB07p05719.

Reid, H. (1910), The mechanics of the earthquake: The California earth-
quake of April 18, 1906, report, vol. 2, 192 pp., State Earthquake Invest.
Comm., Carnegie Inst. of Wash., Washington, D. C.

Rikitake, T. (1974), Probability of an earthquake occurrence as estimated
from crustal strain, Tectonophysics, 23, 299–312, doi:10.1016/0040-
1951(74)90029-8.

Rubinstein, J. L., andW. L. Ellsworth (2010), Precise estimation of repeating
earthquake moment: Example from Parkfield, California, Bull. Seismol.
Soc. Am., 100, 1952–1961, doi:10.1785/0120100007.

Rubinstein, J. L., W. L. Ellsworth, N.M. Beeler, D. Lockner, B. Kilgore, and
H. Savage (2012), Fixed recurrence and slip models better predict earth-
quake behavior than the time- and slip-predictable models: 2. Laboratory
earthquake, J. Geophys. Res., 117, B02307, 10.1029/2011JB008723.

Sammis, C. G., and J. R. Rice (2001), Repeating earthquakes as low-stress-
drop events at a border between locked and creeping fault patches, Bull.
Seismol. Soc. Am., 91, 532–537, doi:10.1785/0120000075.

Schaff, D. P., G. C. Beroza, and B. E. Shaw (1998), Postseismic response of
repeating aftershocks, Geophys. Res. Lett., 25, 4549–4552, doi:10.1029/
1998GL900192.

Schaff, D. P., G. H. R. Bokelmann, G. C. Beroza, F. Waldhauser, and W. L.
Ellsworth (2002), High-resolution image of Calaveras Fault seismicity,
J. Geophys. Res., 107(B9), 2186, doi:10.1029/2001JB000633.

Schwartz, D. P., and K. J. Coppersmith (1984), Fault behavior and character-
istic earthquakes: Examples from the Wasatch and San Andreas Fault
Zones, J. Geophys. Res., 89, 5681–5698, doi:10.1029/JB089iB07p05681.

Segall, P., E. K. Desmarais, D. Shelly, A. Miklius, and P. Cervelli (2006),
Earthquakes triggered by silent slip events on Kilauea volcano, Hawaii,
Nature, 442, 71–74, doi:10.1038/nature04938.

Shelly, D. R., and K. M. Johnson (2011), Tremor reveals stress shadowing,
deep postseismic creep, and depth-dependent slip recurrence on the

RUBINSTEIN ET AL.: EARTHQUAKES ARE NOT TIME/SLIP PREDICTABLE B02306B02306

22 of 23



lower-crustal San Andreas fault near Parkfield, Geophys. Res. Lett., 38,
L13312, doi:10.1029/2011GL047863.

Shimazaki, K., and T. Nakata (1980), Time-predictable recurrence model
for large earthquakes, Geophys. Res. Lett., 7, 279–282, doi:10.1029/
GL007i004p00279.

Thurber, C., H. Zhang, F. Waldhauser, J. Hardebeck, A. Michael, and
D. Eberhart-Phillips (2006), Three-dimensional compressional wave- speed
model, earthquake relocations, and focal mechanisms for the Parkfield,
California, region, Bull. Seismol. Soc. Am., 96, S38–S49, doi:10.1785/
0120050825.

Toke, N. A., et al. (2011), Late Holocene slip rate of the San Andreas fault
and its accommodation by creep and moderate-magnitude earthquakes at
Parkfield, California, Geology, 39, 243–246, doi:10.1130/G31498.1.

Tukey, J. W. (1958), Bias and confidence in not-quite large samples, Ann.
Math. Stat., 29, 614.

Uchida, N., T. Matsuzawa, and A. Hasegawa (2003), Interplate quasi-static
slip off Sanriku, NE Japan, estimated from repeating earthquakes,Geophys.
Res. Lett., 30(15), 1801, doi:10.1029/2003GL017452.

Uchida, N., T. Matsuzawa, A. Hasegawa, and T. Igarishi (2005), Recur-
rence intervals of characteristic M4.8 � 0.1 earthquakes off-Kamaishi,
NE Japan: Comparison with creep rate estimated from small repeating
earthquake data, Earth Planet. Sci. Lett., 233, 155–165, doi:10.1016/j.
epsl.2005.01.022.

Uchida, N., T. Matsuzawa, S. Hirahara, and A. Hasegawa (2006), Small
repeating earthquakes and interplate creep around the 2005 Miyagi-oki
earthquake (M7.2), Earth Planets Space, 58, 1577–1580.

Uchida, N., T. Matsuzawa, W. L. Ellsworth, K. Imanishi, T. Okada, and
A. Hasegawa (2007), Source parameters of a M4.8 and its accompanying
repeating earthquakes off Kamaishi, NE Japan: Implications for the hierar-
chical structure of asperities and earthquake cycle,Geophys. Res. Lett., 34,
L20313, doi:10.1029/2007GL031263.

Uchida, N., J. Nakajima, A. Hasegawa, and T. Matsuzawa (2009), What
controls interplate coupling?: Evidence for abrupt change in coupling across
a border between two overlying plates in the NE Japan subduction zone,
Earth Planet. Sci. Lett., 283, 111–121, doi:10.1016/j.epsl.2009.04.003.

Utsu, T. (1972a), Large earthquakes near Hokkaido and the expectancy of
the occurrence of a large earthquake of Nemuro, Rep. 7:7–13, Coord.
Comm. for Earthquake Predict., Tsukuba, Japan.

Utsu, T. (1972b), Aftershocks and earthquake statistics (IV), J. Fac. Sci.,
Hokkaido Univ. Ser. VII, 4, 1–42.

Utsu, T. (1984), Estimation of parameters for recurrence models of earth-
quakes, Bull. Earthquake Res. Inst. Univ. Tokyo, 59, 53–66.

Vidale, J. E., W. L. Ellsworth, A. Cole, and C. Marone (1994), Variations in
rupture process with recurrence interval in a repeated small earthquake,
Nature, 368, 624–626, doi:10.1038/368624a0.

Waldhauser, F., andW. L. Ellsworth (2000), A double-difference earthquake
location algorithm: Method and application to the Northern Hayward
Fault, California, Bull. Seismol. Soc. Am., 90, 1353–1368, doi:10.1785/
0120000006.

Waldhauser, F., and D. P. Schaff (2008), Large-scale relocation of two
decades of Northern California seismicity using cross-correlation and
double-difference methods, J. Geophys. Res., 113, B08311, doi:10.1029/
2007JB005479.

Weldon, R., T. Fumal, and G. Biasi (2004), Wrightwood and earthquake
cycle: What a long recurrence record tells us about how faults work,
GSA Today, 14, 4–10, doi:10.1130/1052-5173(2004)014<4:WATECW>
2.0.CO;2.

Wells, D. L., and K. J. Coppersmith (1994), New empirical relationships
among magnitude, rupture length, rupture width, rupture area, and surface
displacement, Bull. Seismol. Soc. Am., 84, 974–1002.

Working Group on California Earthquake Probabilities (2003), Earthquake
probabilities in the San Francisco Bay region, 2002–2031, U.S. Geol.
Surv. Open File Rep., 03–214.

Wu, S.-C., C. A. Cornell, and S. R. Winterstein (1995), A hybrid recurrence
model and its implication on seismic hazard results, Bull. Seismol. Soc.
Am., 85, 1–16.

Zoback, M., S. Hickman, and W. L. Ellsworth (2010), Scientific drilling
into the San Andreas Fault Zone, Eos Trans. AGU, 91, 197–199,
doi:10.1029/2010EO220001.

K. H. Chen, Department of Earth Sciences, National Taiwan Normal
University, No. 88, Sec. 4, Tingzhou Rd., Wenshan District, Taipei 11677,
Taiwan. (katepili@gmail.com)
W. L. Ellsworth and J. Rubinstein, U.S. Geological Survey, 345Middlefield

Rd., Menlo Park, CA 94025, USA. (ellsworth@usgs.gov; jrubinstein@usgs.
gov)
N. Uchida, Research Center for Prediction of Earthquakes and Volcanic

Eruptions, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
(uchida@aob.gp.tohoku.ac.jp)

RUBINSTEIN ET AL.: EARTHQUAKES ARE NOT TIME/SLIP PREDICTABLE B02306B02306

23 of 23



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


