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Earthquake predictability is a fundamental problem of seismology. Using a sophisticated model, a Bayesian
approach with lognormal distribution on the renewal process, we theoretically formulated a method to calculate
the conditional probability of a forthcoming recurrent event and forecast the probabilities of small interplate
repeating earthquakes along the Japan Trench. The numbers of forecast sequences for 12 months were 93 for
July 2006 to June 2007, 127 for 2008, 145 for 2009, and 163 for 2010. Forecasts except for 2006–07 were posted
on a web site for impartial testing. Consistencies of the probabilities with catalog data of two early experiments
were so good that they were statistically accepted. However, the 2009 forecasts were rejected by the statistical
tests, mainly due to a large slow slip event on the plate boundary triggered by two events with M 7.0 and M 6.9.
All 365 forecasts of the three experiments were statistically accepted by consistency tests. Comparison tests
and the relative/receiver operating characteristic confirm that our model has significantly higher performance in
probabilistic forecast than the exponential distribution model on the Poisson process. Therefore, we conclude that
the occurrence of microrepeaters is statistically dependent on elapsed time since the last event and is not random
in time.
Key words: Earthquake predictability, small repeating earthquake, probabilistic forecast, test of forecast, inter-
plate earthquake.

1. Introduction
Earthquake periodicity and seismic gaps have been used

for long-term forecasts of large earthquakes in various re-
gions (e.g., Imamura, 1928; Sykes, 1971; Kelleher, 1972;
Kelleher et al., 1973; McCann et al., 1979; Working Group
on California Earthquake Probabilities (WGCEP), 1988,
1990, 1995, 2003; Nishenko, 1991; Earthquake Research
Committee (ERC), 2001; Matsuzawa et al., 2002; Field,
2007; Field et al., 2009). McCann et al. (1979) gave fore-
casts for specified ranked categories of earthquake poten-
tials for most of the Pacific Rim. Nishenko (1991) presented
the first global probabilities of either large or great inter-
plate earthquakes in 97 segments of simple plate bound-
aries around the circum-Pacific region during the next 5,
10, and 20 years, in terms of conditional probability based
on elapsed time since the last event and mean recurrence
time with a lognormal distribution model. Rigorous tests of
Nishenko’s forecasts were conducted by Kagan and Jackson
(1995) for 5 years and by Rong et al. (2003) for 10 years by
using the seismic catalogs of the Preliminary Determina-
tion of Epicenters (PDE) of the U.S. Geological Survey and
the Harvard Centroid Moment Tensor (CMT). They statis-
tically rejected Nishenko’s forecasts with the number test
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(N-test), the likelihood test (L-test), and the likelihood ratio
test (R-test). The predicted events in both periods were too
numerous to result from random variation. As reasons for
failure, they suggested biasing of the estimated earthquake
rate and excluding effects of open intervals before the first
event and after the last event.

Davis et al. (1989) indicated that parameter uncertainties
affect seismic potential estimates strongly for some distri-
butions (e.g., the lognormal) and weakly for the Poisson dis-
tribution. The method used by Nishenko is too crude to re-
flect the parameter estimation errors derived from the small
number of samples on the probabilities. Official forecasts
by WGCEP and ERC have not yet been tested statistically,
as the forecast periods are not yet over.

In this paper, we study the predictability of recurrent
earthquakes, applying sophisticated methods based on the
Bayesian approach or small sample theory with lognormal
distribution. The small repeating earthquakes (SREs) used
in this study occur on the plate boundary in the same condi-
tion for large interplate earthquakes. The SRE data is much
more suitable than large recurrent event data for experi-
ments of prospective probabilistic forecasts for three rea-
sons: (1) events are objectively qualified and accurate in
time; (2) the recurrence intervals are short; and (3) the cat-
alog of events is compiled based on a stable observation
network and contains many sequences to test forecasts sta-
tistically.

More than 1000 characteristic sequences or clusters of
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Table 1. Probability distributions.

Name & Symbol Probability density function Remarks

normal
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2πσ 2
exp

{
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2σ 2

} µ: mean

N
(
µ, σ 2

)
σ 2: variance

log-normal
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t
√

2πσ 2
exp
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− (ln(t)−µ)2

2σ 2

}
mean = exp

(
µ + σ 2/2

)
LN(µ, σ 2)

t
ft (x) = 
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mπ
(m/2)

(
1 + x2/m

)− m+1
2 m: degree of freedom

t (m)

exponential
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exp

(− t
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e(σ )

inverse gamma
fR(y) = 1

ζ
(φ)

(
ζ
y

)φ+1
exp

(
− ζ
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) φ: shape


R(φ, ζ )
ζ : scale

mean = ζ/(φ − 1)

Brownian passage time
fBPT(t) =

√
µ√

2πα2t3
exp

{
− (t−µ)2

2µα2t

} mean = µ,

BPT(µ, α) variance = (µα)2

SREs with nearly identical waveform have been found near
the east coast of NE Japan since 1984 (36.5–41.5 deg. N) or
1993 (41.5–43.5 deg. N and 34.5–36.5 deg. N) (Igarashi et
al., 2003; Uchida et al., 2003). These repeaters in a cluster
are assumed to occur on the same small asperity surrounded
by an aseismic creeping zone on the plate boundary. The
forecast bin specifying an event may be smaller in vol-
ume of location and in focal mechanism, but the magnitude
range for a sequence may be larger than those for Regional
Earthquake Likelihood Models (RELM) by Schorlemmer
et al. (2007) and for the Collaboratory for the Study of
Earthquake Predictability (CSEP, Jordan, 2006). We esti-
mated the probabilities for repeaters in the forecast period
of a year using a Bayesian model with lognormal distribu-
tion. There were 93 sequences for July 2006 to June 2007,
127 for 2008, 145 for 2009, and 163 for 2010 that were se-
lected for the forecast. The repeaters occurred from 1993
until the forecast time were used to calculate the forecast
probability. The forecast sequences consisted of five events
or more. With the exception of the results of the first ex-
periment (2006–2007), those probabilities were posted on a
web site for impartial forecast and testing.

Comparing forecasts with a seismic catalog on repeater
data, we tested probabilities with not only N- and L-tests
but also with the test of Brier score (Brier, 1950). We
pay attention to whether the next qualifying event in the
sequence will occur in the forecast period or not, regard-
less the event timing within the forecast period. Alterna-
tive forecasts were computed with the lognormal distribu-
tion model based on the small sample theory and the ex-
ponential distribution model based on the Poisson process.
The three models were compared using the R-test and the
test of difference in Brier scores.

2. Theory
We assume that (n + 1) events of a sequence have oc-

curred, separated by n time intervals Ti , and that the time
elapsed since the last event is Tp. The unknown recurrence
interval from the last event to the upcoming one is denoted
as Tn+1.

In the lognormal distribution model on a renewal process,
the common logarithms of recurrence interval, Xi = ln(Ti ),

follow a normal distribution, N (µ, σ 2). Symbols and prob-
ability density functions (PDFs) of some distributions are
listed in Table 1. The sample mean, x = (1/n)

∑n
i=1 xi ,

and sample variance, s2 = (1/n)
∑n

i=1(xi − x)2, are deter-
mined from observed data at the forecasting time (Tp).

If population parameters are known, it is very easy to
calculate the probability, Pq(Tp, Tp + �T ), for the event
in the forecast period with the conditional probability,

Pq(Tp, Tp+�T ) = FN (x f ; µ, σ 2) − FN (x p; µ, σ 2)

1 − FN (x p; µ, σ 2)
, (1)

where FN is the cumulative distribution function (CDF) of a
normal distribution, �T is the length of the forecast period,
x p = ln(Tp), and x f = ln(Tp + �T ). However, it is
actually very difficult to find the accurate parameters for
a population from small samples, and it is better to regard
them as unknown parameters.
2.1 Bayesian approach

Maximum likelihood estimates may be biased when there
are few samples and a wide range of values are consistent
with the observation (Davis et al., 1989). We will not deter-
mine the parameters with the maximum likelihood method
or the least square method. Instead, we directly estimate
the conditional probabilities, Pq , in Eq. (1) by the Bayesian
approach.

The likelihood function including the open-ended inter-
val is given as

L(µ, σ 2) = (
1 − FN (x p; µ, σ 2)

) n∏
i=1

fN (xi ; µ, σ 2). (2)

According to Bayes’ theorem, the PDF for parameters,
h(µ, σ 2), is given as

h(µ, σ 2|x1, x2, ..., xn) = π(µ, σ 2)L(µ, σ 2)∫ ∞

0

∫ ∞

−∞
π(µ, σ 2)L(µ, σ 2)dµdσ 2

,

(3)
where π(µ, σ 2) is the prior distribution for parameters.
Here, Pq is not a specified value but a random variable. The
CDF for Pq is given as

Fp(p; T, �T ) =
∫∫

S
h(µ, σ 2)dµdσ 2,
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S =
{(

µ, σ 2
) ∣∣∣∣ FN

(
x f ; µ, σ 2

) − FN
(
x p; µ, σ 2

)
1 − FN

(
x p; µ, σ 2

) ≤ p

}
,

Where 0 ≤ p ≤ 1. Integration of this formula is remarkably
complicated; thus, we use the average of conditional prob-
ability, Pq , as the probability of a qualifying event, written
as

Pq =
∫ ∞

σ 2=0

∫ ∞

µ=−∞

FN
(
x f ; µ, σ 2

) − FN
(
x p; µ, σ 2

)
1 − FN

(
x p; µ, σ 2

)
×h

(
µ, σ 2

)
dµdσ 2

=

∫ x f

u=x p

∫ ∞

σ 2=0

∫ ∞

µ=−∞
W

(
µ, σ 2, u

)
dµdσ 2du∫ ∞

u=x p

∫ ∞

σ 2=0

∫ ∞

µ=−∞
W

(
µ, σ 2, u

)
dµdσ 2du

. (4)

W = π
(
µ, σ 2

)
fN

(
u; µ, σ 2

)( n∏
i=1

fN
(
xi ; µ, σ 2

))
. (5)

Let us consider here the prior distribution. We adopted
the uniform prior distribution for parameter µ since it varies
in an infinite interval, −∞ < µ < ∞. For σ 2 varying in a
semi-infinite interval, 0 < σ 2 < ∞, two types were stud-
ied. One is a natural conjugate prior distribution, inverse
gamma, 
R(φ, ζ ), and the other is the non-informative prior
distribution, inverse of σ 2, proposed by Jeffreys (1961). Pa-
rameter φ indicates shape and ζ indicates scale for inverse
gamma.

By using an inverse gamma prior distribution, Eq. (5) is
written as

W = ζ φ

√
n + 1

(√
2π

)n




(
n + 2φ

2

)

(φ)

× J− n+2φ

2

× fR

(
σ 2; n+2φ

2
, J

)
× fN

(
µ; u+nx

n + 1
,

σ 2

n + 1

)
J = n(u − x)2 + (n + 1)

(
ns2 + 2ζ

)
2(n + 1)

.

As terms of fN and fR are PDFs of the normal and inverse
gamma distributions, they become unity with integration of
µ and σ 2 over the whole interval. The probability, Pq , in
Eq. (4) is finally given as

Pq = Ft
(
z f ; n + 2φ − 1

) − Ft
(
z p; n + 2φ − 1

)
1 − Ft

(
z p; n + 2φ − 1

)
z p =

√
n (n + 2φ − 1) / (n + 1)

(
ns2 + 2ζ

) (
x p − x

)
(6)

z f =
√

n (n + 2φ − 1) / (n + 1)
(
ns2 + 2ζ

) (
x f − x

)
.

This formula means that the variable√
n(n + 2φ − 1)/(n + 1)(ns2 + 2ζ )(X − x) follows

t-distribution with n + 2φ − 1 degrees of freedom, and
conditional probability is given by Eq. (1) for this variable.

For the prior distribution of (σ 2)−m for σ 2, Pq is calcu-
lated as

Pq = Ft
(
z f ; n + 2m − 3

) − Ft
(
z p; n + 2m − 3

)
1 − Ft

(
z p; n + 2m − 3

)

z p =
√

(n + 2m − 3) / (n + 1)
(
x p − x

) /
s (7)

z f =
√

(n + 2m − 3) / (n + 1)
(
x f − x

) /
s.

Jeffreys’ non-informative prior distribution corresponds to
m = 1 (Jeffreys, 1961), and we expect that the variable of√

(n − 1)/(n + 1)(Xn+1 − x)/s obeys t-distribution with
n − 1 degrees of freedom.
2.2 Small sample theory

Suppose n + 1 random variables Xi = ln(Ti ), i =
1, ..., n + 1 obey a normal distribution N (µ, σ 2) and take
the variables for mean and variance of n variables, X =
(1/n)

∑n
i=1 Xi and S2 = (1/n)

∑n
i=1(Xi − X)2. The fol-

lowing properties are well-known in statistics (e.g., Wilks,
1962).

(1) The variable D = Xn+1 − X follows N (0, (n +
1)σ 2/n).

(2) The variable nS2/σ 2 follows a chi-squared distribution
with n − 1 degrees of freedom.

(3) The variable {D/
√

(n + 1)σ 2/n}/
√

nS2/(n − 1)σ 2 =√
(n − 1)/(n + 1)(Xn+1 − X)/S follows a t-

distribution with n − 1 degrees of freedom.

At forecasting time, we have n data, and the mean and
variance of samples, x and s2, corresponding to X and S2,
can be calculated. Thus, we naturally expect that the vari-
able

√
(n − 1)/(n + 1)(Xn+1−x)/s follows a t-distribution

with n − 1 degrees of freedom. Therefore, the probability
based on the small sample theory (exact sampling theory)
is calculated by the Bayesian approach with Jeffreys’ non-
informative prior distribution.
2.3 Exponential distribution model

If the event occurs uniformly and randomly, the probabil-
ity of an event does not depend on the elapsed time since the
last event, and the recurrence interval between successive
events is distributed exponentially. Conditional probability
is given by Pq(Tp, Tp + �T ) = 1 − exp(−�T/t), where t
is the average of observed recurrence intervals.

3. Small Repeating Earthquakes
It has been pointed out that SREs are caused by the re-

peated rupture of small asperities within the creeping zone
of a fault plane (e.g., Nadeau et al., 1995; Igarashi et al.,
2003; Uchida et al., 2003). We use the waveform similarity
of earthquakes with a magnitude of 2.5 or larger to identify
repeaters in the subduction zone between the Japan Trench
and the east coast of NE Japan. Maximum magnitude is
practically about 5 mainly owing to the employed waveform
similarity threshold that is applicable for small earthquakes.
The SRE was objectively selected by the threshold of wave-
form coherence in a 40-second waveform that contains both
P and S phases. Details of the methods for identifying SRE
and for compiling the SRE catalog are described by Uchida
et al. (2009).

SREs are more suitable for the prospective forecasts than
previous studies (e.g., Nishenko, 1991), because the events
are objectively identified, the occurrence times are accu-
rate, the recurrence intervals are much shorter, and many
sequences have been found. We applied three criteria for
SRE sequences for forecasting: (1) five or more events oc-
curred from 1993 until the forecast time, (2) the averaged
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Fig. 1. Distribution of the SRE clusters. The colored symbols indicate se-
quences of the 2010 forecast, but the gray ones are not used, due to the
criteria discussed in the main text. The area of “OFF TOKACHI” de-
notes the possible aftershock area for the 2003 Off Tokachi earthquake
(September 26, 2003, M 8.0), and that of “OFF SANRIKU” denotes
the possible aftershock area for the 1994 Off Sanriku earthquake (De-
cember 28, 1994, M 7.6). The stars denote the epicenters of the main
shocks.

magnitude is 2.75 or larger and less than 4.5, and (3) the
number of possible aftershocks of the 2003 Off Tokachi
earthquake (September 26, 2003; M 8.0) and the 1994 Off
Sanriku earthquake (December 28, 1994; M 7.6) are less
than one third of the events in the sequence. Aftershock ac-
tivity includes many SREs (Uchida et al., 2003, 2009; Chen
et al., 2010), but the physical conditions for the earthquake
occurrence for the period are thought to be complicated and
unstable due to the existence of afterslip or stress interac-
tions. We regarded SREs as possible aftershocks that oc-
curred in the areas of “Off Tokachi” in the period from the
main shock through March 31, 2005 and “Off Sanriku” in
the period from the main shock through January 31, 1996
(Fig. 1). These three criteria were chosen considering the
stability of seismic observation, the lower magnitude limit
of clear waveform records for offshore events, and the influ-
ence of nearby earthquakes that cause changes in the load-
ing rate. In this study, small repeaters are thought to occur
by the same process as large interplate earthquakes. Exclu-
sion of aftershocks can exclude repeaters under the strong
effect of nearby much larger earthquake that is not expected
for large earthquakes.

Ninety-three sequences satisfied the above criteria for
the forecast on July 1, 2006; 127 for that on January 1,
2008; 145 for that on January 1, 2009; and 163 for that

Fig. 2. Frequency distribution of the number of repeaters in each sequence
used in the 2010 forecasts. Ns and Neq are the numbers of all forecast
sequences and all SREs in the forecast sequences. Mavg is the sequence
averaged magnitude and Nse is the number of SREs in a forecast se-
quence.

on January 1, 2010. Figure 1 presents the distribution of
SRE clusters having four or more events from 1993 to 2009
with an average of M 2.5 or larger. Clusters with colored
symbols (except small gray symbols) were used for the
2010 forecast. The SREs are distributed in the subduction
zone off Kanto to Hokkaido. The averaged magnitudes of
forecast sequences are between 2.75 and 4.26. Figure 2
presents the frequency distribution of the number of events
in each sequence for the 2010 forecast. Two-thirds of the
163 sequences have seven SREs or less, which is fairly
small for statistical estimation of probability. The range
of averaged sequence recurrence interval is from 0.83 to
3.84 years and the coefficient of variations, ratio of standard
deviation to averaged interval, is 0.47 in average and less
than 0.5 for about 60 percents of sequences for 2010.

4. Forecasts and Observations
We tried to estimate the probabilities of SRE sequences

on the plate boundary along the Japan Trench. Their lo-
cations are indicated in Fig. 1. The fundamental values
of forecasts (e.g., the number of sequences) are listed in
Table 2. The prospective forecast probabilities for one year
were posted on the web site1 in July of 2008, April of 2009,
and March of 2010 for impartial testing.

We used the following three models for calculating prob-
abilities and statistical testing.

LN-Bayes: A Bayesian approach for lognormal distribu-
tion of the recurrence interval with an inverse gamma
prior distribution. The probability forecast by this
model is given by Eq. (6). The parameters of inverse
gamma were φ = 2.5 and ζ = 0.44 (Okada et al.,
2007) for the two earlier trials. They were changed to
φ = 1.5 and ζ = 0.15 for the two later trials, based on
the R-test result for the 2008 probabilities calculated
by LN-Bayes and by LN-SST. Determination of these
parameters is briefly explained in Appendix.

LN-SST: Lognormal distribution model based on the small
sample theory. The probability forecast by this model

1http://www.aob.geophys.tohoku.ac.jp/∼uchida/kenkyuu/souji-yosoku/
souji-kakuritsu-e.html
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Table 2. Fundamental values of forecasts and consistency scores of the probabilities for 12 months.

Forecast period

2006.7–07.6 2008.1–08.12 2009.1–09.12 2010.1–10.12 Total

Forecast sequences 93 127 145 163 528

Qualifying events 51 56 70 177

Analysis for forecast

Data period 1993/1–06/6 1993/1–07/12 1993/1–08/12 1993/1–09/12

SREs 671 912 1075 1239

Model Score/Verification

LN-Bayes
E(N )

41.4 56.1 61.2 158.7

UD AC AC UD

MLL
−0.519 −0.531 −0.647 −0.574

AC AC RJ AC

BS
0.177 0.178 0.228 0.197

AC AC RJ AC

LN-SST
E(N )

39.4 53.7 58.0 151.1

RJ AC UD RJ

MLL
−0.526 −0.497 −0.678 −0.576

AC AC RJ UD

BS
0.182 0.167 0.235 0.198

AC AC RJ RJ

Exp
E(N )

39.7 49.9 55.4 145.0

UD AC RJ RJ

MLL
−0.669 −0.638 −0.696 −0.669

AC AC UD AC

BS
0.238 0.223 0.251 0.238

AC AC UD AC

Remarks: E(N ) is the expectation of sequences with qualifying events, MLL is the mean log-likelihood score, and BS is the Brier
score. Here, AC indicates that the score is accepted by N-, L-, or BS-test at a significance level of 0.95; RJ indicates that it is
rejected at the 0.99 level; and UD indicates that it is rejected at the 0.95 level but accepted at the 0.99 level.

is given by Eq. (7). This is an alternative model to
determine consistency with LN-Bayes.

EXP: Exponential distribution model based on the Poisson
process. The probability of an event is independent of
the elapsed time since the last event. This is the alter-
native model to compare with the two time-dependent
models, LN-Bayes and LN-SST.

The prospective probabilities for SREs in 2008 are in-
dicated in Fig. 3(a), and qualifying events are indicated in
Fig. 3(b). The red circles denote earthquake occurrence,
and the blue circles represent the non-occurrence of earth-
quake. There are many sequences with high probability
near the east coast of northern Honshu, Japan, and most of
them included qualifying events during the forecast period.
There is a gap of SRE sequences southeast off Hokkaido,
since we removed the clusters in which one-third or more
events are regarded as possible aftershock of the 2003 Off
Tokachi earthquake and the 1994 Off Sanriku earthquake,
as explained earlier.

For 2009 forecasts (Fig. 4), as many as 23 qualifying re-
peaters occurred to the south of 38◦N, which is remarkably
more than the number expected from prospective probabil-
ities (17.1) for the region. In this area, the rate of SRE se-
quences with low probability increased in the 2010 fore-
casts (Fig. 1), because probability just after an earthquake
in a sequence is low for the lognormal distribution based on
the renewal process.

5. Forecast Verification
Three tests (N-, L-, and R-tests) were applied by Kagan

and Jackson (1995) and Rong et al. (2003) to the prob-
abilistic forecasts by Nishenko (1991). Those tests are a
fundamental procedure to evaluate the rates of earthquakes
forecast by various models submitted to the Regional Earth-
quake Likelihood Models Center (Schorlemmer et al.,
2007). Moreover, we use different verification methods pre-
sented by Jolliffe and Stephenson (2003) for the probabilis-
tic forecasts of binary events. In the following sections, we
assume that events are independent from seismic activities
in other clusters.
5.1 Reliability and resolution

We examined the reliability and resolution of the fore-
casts by the LN-Bayes, LN-SST, and EXP models. Those
forecasts are divided into ten classes depending on the prob-
ability. Figure 5 depicts resulting frequencies and probabil-
ities that are summed for the three 12-month forecasts from
2006 to 2009. The total expectation of events (gray bars)
and the observed number of qualifying SREs (black bars)
are comparable for the three models.

The reliability (Rel) and resolution (Res) are defined as
follows (Toth et al., 2003);

Rel = 1

K

K∑
k=1

{
nk ( p̂k − ĉk)

2
}

Res = 1

K

K∑
k=1

{
nk (̂ck − c)2} ,
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Fig. 3. (a) Prospective forecast probabilities for 127 SRE sequences in 2008. The circles denote the locations of the sequences, and the color indicates
the probability. (b) Distribution of SRE sequences with a qualifying event (red) and without an event (blue) in 2008. FC is the period of forecast.

Fig. 4. (a) Prospective forecast probabilities for 145 SRE sequences in 2009. (b) Distribution of SRE sequences with an event (red) and without an
event (blue) in 2009.
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(a)(a)

(b)(b)(b)

(c)(c)(c)

Fig. 5. Frequencies of forecast sequences (left white bars), the expected
number of sequences filled with qualifying events (the sum of forecast
probabilities, central gray bars), and the actual number of observed qual-
ifying events (right black bars) for every 10% range of probabilities
for three trials (forecast period: 2006–2007, 2008, and 2009) for the
LN-Bayes (top), the LN-SST (middle), and the EXP (bottom) models.
Ns: the number of all forecast sequences, Nq: the number of all se-
quences filled with qualifying event, E(Nq): sum of all probabilities
(expectation of Nq), MLL: mean of log-likelihood, and BS: Brier score.

where K is the number of classes, and nk , p̂k , and ĉk are the
number of forecasts, the averaged probability and the rate of
event occurrence for k-th class, respectively, and c is event
occurrence rate for all forecasts. The smaller the reliability
is, the better the forecast is. And the larger the resolution is,
the better the forecast is. The resolution is independent of
reliability.

The values of reliability are 0.00091 for LN-Bayes,
0.00105 for LN-SST, and 0.0019 for EXP. And the reso-
lutions are 0.0590 for LN-Bayes, 0.0616 for LN-SST, and
0.0254 for EXP. These results indicate that forecast proba-
bilities by those models are not so biased and that their re-

Fig. 6. ROC curves for all probabilistic forecasts (i.e., 365 forecasts) pro-
duced by the three models in the trials of 2006–2007, 2008, and 2009.
The black diagonal line indicates the forecasts by random distribution,
the purple curve denotes those by the EXP model, the green curve de-
notes those by the LN-SST model, and the red curve denotes those by
the LN-Bayes model.

liability may be fairly good. The forecast by the LN-Bayes
model is slightly better in reliability but worse in resolution
than those by the LN-SST model. The gray bars in the top
panel in Fig. 5 are slightly more consistent with the black
ones and are more concentrated than those in the middle
panel. The EXP model is much lower in resolution than
others, as shown in bottom panel in Fig. 5 the probabilities
are apt to gather in some ranges.
5.2 Relative/Receiver Operating Characteristic

The Relative/Receiver Operating Characteristic (ROC) is
a signal detection curve over a range of different probabil-
ity decision thresholds (e.g., Jolliffe and Stephenson, 2003).
Suppose that we issue an alarm for every case of probabil-
ity higher than the threshold. The hit rate is the ratio of the
number of hit alarms and all SRE sequences with a qualify-
ing event, and the false alarm rate is the ratio of the num-
ber of false alarms and all sequences without a qualifying
event. Both rates increase from 0 to 1 as the threshold prob-
ability changes from 1 to 0. In Fig. 6, the horizontal axis
indicates the false alarm rate, and the vertical axis indicates
the hit rate for the three 12-month forecasts from 2006 to
2009. The curve located in the upper left zone indicates bet-
ter forecasts, and that near the diagonal line corresponds to
random forecasts. This figure confirms that forecasts by the
EXP model are better than random forecasts, as the model
uses information on the average of observed recurrence in-
terval. The LN-Bayes and LN-SST models are compara-
ble in predictability and are remarkably better than the EXP
model.
5.3 Consistency test

We use three scores and related tests, based on the total
number of qualifying events (N-test), the likelihood score
(L-test), and the Brier score (BS-test) (Brier, 1950). For the
consistency test, the score of observation data is compared
with the theoretical score distribution that is computed from
the forecast probabilities. Those scores and the test results
are summarized in Table 2.
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Fig. 7. N-test for 365 forecasts of three trials by the LN-Bayes model.
The black curve indicates the theoretical distribution of the frequency of
qualifying events calculated from forecast probabilities, and the vertical
dashed line indicates the observed frequency of qualifying events. Ns
is the number of forecast sequences and Nq is the number of sequences
filled with qualifying event in the forecast period.

The theoretical distribution of the frequency of sequences
with qualifying event, Nq is numerically calculated with the
iteration formula

Pr
(
N n+1

q = k
) = pn+1Pr

(
N n

q = k − 1
)

+ (1 − pn+1) Pr
(
N n

q = k
)
,

where pn+1 is the probability of the qualifying event of the
(n + 1)-th forecast, and Pr(N n+1

q = k) is the probability for
k of n + 1 sequences to include qualifying events.

Scores of log-likelihood, LL, and Brier, BS, for n fore-
casts for binary events are given as

LL =
n∑

i=1

{ci ln (pi ) + (1 − ci ) ln (1 − pi )}

BS = 1

n

n∑
i=1

(pi − ci )
2

where pi is the forecast probability that the i-th sequence
will include a qualifying event; ci is equal to 1 if the event
occurs, and is zero otherwise.

The theoretical distribution of LL is also numerically
calculated with the iteration formula

Pr
(
LLn+1 = x j,n + xi,n+1

) = p
(
xi,n+1

)
Pr

(
LLn = x j,n

)
,

where i = 1 corresponds to a qualifying event, i = 0 to
otherwise, and j = 0, 1, ..., jmax, x0,n+1 = ln(1 − pn+1),
and x1,n+1 = ln(pn+1). The number of score values, jmax,
for n forecasts may rapidly increase as fast as 2n . When
x j,n and xk,n are equal or very close to each other and their
probabilities are very small, we replace them by a weighted
mean of two, xl,n , to decrease the number:

xl,n =(
x j,nPr

(
x j,n

)+xk,nPr
(
xk,n

))/(
Pr

(
x j,n

)+Pr
(
xk,n

))
Pr

(
xl,n

) = Pr
(
x j,n

) + Pr
(
xk,n

)
.

The theoretical distribution of BS is numerically calculated
by a similar procedure for the LL score.

The expected frequency (number of events) of 56.1 for
2008 determined by the Bayesian model is very close to

Fig. 8. L-test for 365 forecast probabilities of three trials produced by the
LN-Bayes model. The curved line denotes the theoretical distribution
of the total log-likelihood, LL, and the vertical dashed line denotes its
observed score. The horizontal lines indicate the points of 0.05 and
0.95 of the cumulative probability used for testing. Ns is the number of
forecasts.

Fig. 9. Results of the BS-test for 365 forecasts of three trials from 2006 to
2009 by the LN-Bayes model. The curved line indicates the theoretical
distribution of the BS score, BS, and the vertical dashed line denotes
that of its observed one. Ns is the number of forecasts.

that of observed qualifying events (56), but is somewhat
smaller than the actual frequency for other periods. The
other two models estimated a smaller number than the LN-
Bayes model. Figure 7 presents an example of the N-test,
which compares the theoretical distribution for the 365 fore-
casts of the three trials with the observed frequency (177
qualifying events, vertical dashed line). The observed num-
ber corresponds to 0.984 in theoretical CDF. This result
means that the expected number, E(N ), is too small to ac-
cept those forecasts, and they are rejected statistically at a
significance level of 0.95 but accepted at a level of 0.99.

Examples of the L-test and BS-test are depicted in Figs. 8
and 9 for the forecasts of three experiments from 2006
to 2009, respectively. Our probabilities are accepted at
the 0.95 significance level. We denote the mean of log-
likelihood for a single forecast with MLL (= LL/n). For
better forecasts, the scores of LL and MLL are larger, while
the BS score is smaller. The result of the test with the MLL
score is the same as that of the L-test. The MLL and BS
scores produced by the LN-Bayes model, listed in Table 2
for three trials, are close to those produced by the LN-SST
model and are remarkably better than those by the EXP
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Fig. 10. Brier scores for the forecasts for SREs (horizontal lines) and
for the probability precipitation forecasts at Tokyo (lines with symbols)
produced by the Japan Meteorological Agency. The horizontal axis is
the lead time of weather forecasts in days.

model. The scores for the 2009 forecasts are somewhat
worse than the former two trials (Table 2).

The scores of MLL and BS may be used to compare the
forecasts with those in a different number or type. For ex-
ample, Fig. 10 compares our forecasts for SREs with those
for precipitation at Tokyo produced by the Japan Meteo-
rological Agency. Their precipitation forecast is similar to
ours if we replace earthquake with precipitation. The fore-
cast is the probability of rain (earthquake) and the result is
whether it rained (earthquake occurred) or not. The scores
of SRE forecasts for 2006–2007 and 2008 were comparable
to those for precipitation several day forecasts, but the 2009
forecasts were worse than the weather forecasts.
5.4 Comparison test

We statistically compare the forecasting model (H1) and
the alternative model (H0) by the R-test, which is based on
the differences in LL, and the dBS-test, which is based on
the differences in BS. Theoretical score distributions used
for these tests are numerically computed by a procedure
similar to that applied for LL.

Figure 11 presents the results of the R-test for the LN-
Bayes model (H1) and the EXP model (H0) for 365 fore-
casts of three trials from 2006 to 2009. If H0 is correct,
the difference of the log-likelihood, R = LH1 − LH0, is
theoretically distributed as the blue curve. However, it does
not fit the observed value of R = 34.5, therefore, H0 (EXP
model) is statistically rejected. In contrast, the theoretical
distribution for H1 fits the observed value; thus, H1 is sta-
tistically accepted. Hence, the forecast model H1 is consid-
ered to be significantly better than the alternative model H0
at a significance level of 0.95.

The results of the R-test for the LN-Bayes model (H1)
and the LN-SST model (H0) are depicted in Fig. 12. Both
models are rejected at a significance level of 0.95 but ac-
cepted at a level of 0.99. Figure 13 presents the result of the
dBS-test, in which the LN-Bayes model is statistically bet-
ter than the LN-SST model, though the difference in scores
is very small.

All results of R- and dBS-tests for the three trials are

Fig. 11. R-test for the LN-Bayes model (H1) and the EXP model (H0).
Ns is the number of forecast sequences.

Fig. 12. R-test for the LN-Bayes model (H1) and the LN-SST model (H0).
Ns is the number of forecast sequences.

Fig. 13. dBS-test for the LN-Bayes model (H1) and LN-SST model (H0).
Ns is the number of forecast sequences.

summarized in Table 3. Here, AC indicates that the score
is accepted by N-, L-, or BS-test at a significance level of
0.95; RJ indicates that it is rejected at the 0.99 level; and
UD indicates that it is rejected at the 0.95 level but accepted
at the 0.99 level. As a whole, the EXP model is quite
significantly worse than the other two models.

6. Discussion
To evaluate the prospective forecasts, we consider the

following four sets of forecasts: (1) 93 probabilities for the
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Table 3. Scores of R (= LL1−LL0) and dBS (= BS1−BS0) and results of tests for forecast probabilities for 12 months.

Forecast model, H1 Alternative model, H0
Forecast period

2006.7–07.6 2008.1–08.12 2009.1–09.12 Total

R-test

LN-Bayes EXP
13.9 13.5 7.09 34.5

AC-RJ AC-RJ AC-RJ AC-RJ

LN-SST EXP
13.2 17.9 2.72 33.9

AC-RJ AC-RJ RJ-RJ AC-RJ

LN-Bayes LN-SST
0.640 −4.39 4.39 0.618

AC-AC RJ-AC AC-RJ UD-UD

dBS-test

LN-Bayes EXP
−0.0609 −0.0458 −0.0230 −0.0406

AC-RJ AC-RJ AC-RJ AC-RJ

LN-SST EXP
−0.0558 −0.567 −0.158 −0.0402

AC-RJ AC-RJ UD-RJ AC-RJ

LN-Bayes LN-SST
−0.0051 0.0109 −0.0072 −0.00035

AC-UD RJ-AC AC-RJ AC-UD

Here, AC, RJ, and UD are the same as those in Table 2. The ones on the left side indicate the results for models H1, and those on the
right side indicate the results for model H0.

first trial (July 2006 to June 2007), (2) 127 probabilities for
the second trial (2008), (3) 145 probabilities for the third
trial (2009), and (4) 365 combined probabilities for all three
trials. The results of the fourth trial (2010) are not available
for evaluation because the forecast period was not over at
the time of the submission of this paper. Among these sets,
(1), (2), and (4) were accepted by consistency tests, the L-
test, and the BS-test (Table 2). However, the forecasts of (3)
were rejected statistically, as we will discuss later.

The recurrence interval itself is important for forecast. If
the interval is less than the forecast period, the probabil-
ity for the repeater is inevitably high. The ROC in Fig. 6
shows that the EXP model based on Poisson process tak-
ing the averaged sequence recurrence interval into account
is better than the random forecast. Results of R- and dBS-
tests (Fig. 11 and Table 3) indicate that the LN-Bayes and
LN-SST models dependent on elapsed time since the last
event are significantly better than the EXP model. The ROC
curves depicted in Fig. 6 also suggest that these models
have much higher performance than the EXP model for es-
timating probabilities (Figs. 5 and 6 and Tables 2 and 3).
Therefore, the repeaters on the plate boundary along the
Japan Trench are significantly dependent on elapsed time
since the last event and are not random in time. However, it
is presumed that the inverse gamma prior distribution used
in the LN-Bayes model is slightly more effective for fore-
cast repeaters, since the differences between the consistency
scores of the LN-Bayes and the LN-SST models are very
small.

Missing event, especially last one, has significant ef-
fect on the forecast probability for the relevant sequence.
We collected the SRE by comparing waveform of events
recorded at the same station which were listed in the cat-
alog maintained by the Japan Meteorological Agency for
2.5 or larger in magnitude. Nanjo et al. (2010) estimated
that the completeness magnitude, Mc, for recent event was
1.5 or smaller in the coastal zone and between 2.0 and 2.5
in the offing area near Japan Trench. Mc before the de-
ployment of modern dense observation network in 2002 for

the northeastern Japan was about 0.5 larger than the recent
one. The ratio of signal to noise is smaller for the events in
the distant offing than the coastal zone and the fluctuation
of noise level also affect the detectability of the small re-
peating earthquake. Therefore we assume that some older
events near the Japan Trench might be missed from our SRE
catalog. However the most sequences in coastal zone seem
to be nearly complete and our results are considered to be
in high quality as a whole as shown in the data quality esti-
mation at off Sanriku region (Uchida et al., 2005).

The forecasts by Nishenko (1991) for large characteris-
tic interplate earthquakes around the circum-Pacific region
were rigorously tested by Kagan and Jackson (1995) and
Rong et al. (2003), and were statistically rejected. They
suggested two reasons, the biasing of rate and the effects of
excluding open intervals. We also assume that the model
in the previous study is too crude for the small number of
data. The SRE and the models employed in this study can
adequately deal with these problems. The SRE selected on
the basis of waveform similarity excludes bias by the selec-
tion of sequence; the models using the Bayesian approach
and small sample theory adapt fairly well to small samples
and the open-ended interval. We also suggest that the com-
mon variance parameter, σ = 0.215, used by Nishenko is
probably too small. In our Bayesian model, the mean of
prior distribution for σ 2 is close to 0.3, and the expectation
of σ exceeds 0.215 for most sequences.

As the SREs occur in the same geophysical condition for
the large/great interplate earthquakes, it is likely that our
method is applicable for those recurrent events. A prelim-
inary prior distribution for large events has been proposed
by Okada et al. (2007). However it is fairly difficult to test
the prospective forecasts for the large/great earthquake due
to much longer time interval and small number of recur-
rent events for each sequence. Moreover we have to pay
attention to the uncertainty and errors of old data derived
from historical documents or geological surveys. There-
fore it might be fruitful to perform the prospective forecast
experiments for the moderate recurrent earthquakes with 4
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to 7 in magnitude recorded with seismological instruments
and to test them with observation data in advance of the ex-
periment for large events.

Next we discuss why the consistency tests rejected our
forecasts of 2009. The distribution patterns of clusters in
Figs. 1, 3, and 4 in the northern part are somewhat different
from those in the southern part. The SRE sequences are
crowded near the coast in the northern part and widely
distributed in the southern part. In the northern part to the
north of 38◦N, the score of MLL is −0.614 and that of BS
is 0.218 for 97 sequences of the 2009 forecasts, and the
expected number of qualifying events of 44.1 is close to the
observation of 47. In the southern part, for 48 sequences
the score of MLL is as bad as −0.715 and that of BS is as
bad as 0.247. Furthermore, the expected number of 17.1
is considerably smaller than the observed 23. Consistency
scores for the southern part are considerably worse than
those for the northern part.

We assume that worse results in consistency for the
southern part are due to a large and long-term slow slip
event that is not considered in the present model. In
2008, M 7.0 and M 6.9 interplate earthquakes occurred on
the plate boundary of the southern part of the study area
(Fig. 14). The Geographical Survey Institute (2010) esti-
mated from GPS observation that the M 7.0 earthquake on
May 8, 2008, had triggered a wide and long-term aseis-
mic slip in this district corresponding to 6 to 12 cm/year
(Fig. 14). The afterslip area was much wider than the
co-seismic slip area of the M 7.0 event, 25 km × 25 km
(Nagoya University, 2008) and the foreshock and after-
shock area extended 40 km × 90 km. Co-seismic slip was
estimated to be 1.7 m in maximum. This is one of the largest
earthquakes in the last 80 years in the rectangle part drawn
with a red dotted line in Fig. 14. Mishina et al. (2009) ob-
served a strain change related to the afterslip of the M 6.9
earthquake on July 19, 2008, using a coastal borehole strain
meter. Uchida et al. (2008) applied cumulative slip analysis
for SRE sequences and suggested that the aseismic slip was
about 3 cm/year before the M 7.0 event and accelerated in
a 300 km-long region near the Japan Trench, which encom-
passes both the M 7.0 and M 6.9 earthquakes. Therefore,
we assume that the slow slip in the large area must be re-
lated to the high activities of SREs as well as the occurrence
of several M 6+ earthquakes in that part.

We also must pay more attention to regional differences
and clustering of SRE activities. The frequency of quali-
fying events within every six months from 1993 to 2009 is
36.0 on average for the 163 sequences used for the 2010
forecasts, and their variance is 68.9, which is much larger
than that of Poisson distribution with a mean of 36.0. It is
plausible that some variation in SRE activity is caused by
the coherent occurrence of repeaters among characteristic
sequences, the effects of which are neglected in our models
not only for forecast but also testing.

The Brownian Passage Time (BPT) distribution model is
frequently used for recurrence interval as a physically based
model (e.g., Ellsworth et al., 1999; ERC, 2001; Matthews
et al., 2002; WGCEP, 2003). Matthews et al. (2002) dis-
cuss the characteristic of Brownian relaxation oscillator and
BPT distribution in detail and show the physical interpreta-

Fig. 14. Activities of SRE in the southern part in 2009. The circles indicate
that the qualifying SRE occurred in the forecast period of 2009, and the
triangles indicate that none occurred in 2009. The stars denote large
earthquakes of M 6.0 and larger. The black contour lines indicate the
main slip part from January 19 through March 19, 2009, estimated from
GPS observation (Geographical Survey Institute, 2010). The 2008 Off
Ibaraki earthquake of M 7.0 is one of the largest events in the rectangle
part drawn with the red dotted line.

tion of parameters and the effect of stepwise stress change
on recurrence time. But it was rather difficult for us to
apply Bayes’ theorem to this distribution. We tried to es-
timate probabilities, using parameters determined by the
maximum likelihood method from the observed data. We
failed to obtain the conditional probabilities for some se-
quences. In several sequences, the open interval from the
last event was so long that the CDF was abnormally high.
When the sequence contained a doublet (earthquakes with
very short interval), the parameters could not be determined
by using likelihood with an open-ended interval denoted by
Eq. (2). In one case, we could not calculate CDF for a
BPT distribution due to an overflow in computation. The
BPT distribution may be suitable for forecast based on the
declustered data. We also tried to forecast probabilities with
other distributions for the recurrence interval (e.g., Weibull
and gamma on the large sample theory); however, the prob-
ability for some sequences could not be computed normally,
due to the difficulties mentioned above. The probabilities
by these models exclusive of abnormal cases were worse
than those by LN-Bayes and LN-SST. Therefore, we did
not use those distributions in present study, just lognormal
and exponential distributions, for forecasting probabilities.

7. Conclusion
We theoretically formulated a method to calculate the

conditional probability of a forthcoming recurrent event,
using the Bayesian approach of a lognormal distribution
model with the uniform prior distribution for the mean of
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the logarithm of recurrence interval and inverse gamma for
its variance (LN-Bayes), and the model on the small sample
theory (LN-SST). The probabilities forecast by both mod-
els are given by simple equations including t-distribution
function.

The probabilities forecast by the LN-Bayes model for
SREs in the subduction zone along the Japan Trench are
estimated for 12 months in 2006–07, 2008, and 2009. The
results indicate that all forecasts except that for 2009 were
so good that they passed the N- L- and BS-tests statistically.
The 2009 forecasts were rejected by the L- and BS-tests,
probably due to a large and long-term afterslip event on the
plate boundary triggered by M ∼ 7 earthquakes in 2008.
The MLL and BS scores of the SRE forecasts of two for-
mer experiments were comparable to those for precipitation
several day forecasts at Tokyo, but the 2009 SRE forecasts
were worse than the weather forecasts.

Comparison tests, the R-test and dBS-test, for all 365
forecasts in the three experiments indicate that the LN-
Bayes model based on the renewal process had signifi-
cantly higher performance than the EXP model based on
the Poisson process. The ROC curve also indicates that the
LN-Bayes model is remarkably better than the EXP model.
Therefore, we conclude that the SREs on the plate bound-
ary are statistically dependent on elapsed time since the last
event and are not random in time. However, we assume that
the inverse gamma prior distribution for variance used in the
LN-Bayes model is slightly more effective than the LN-SST
model, although the consistency scores of our experiments
are fairly close for the two models.
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Appendix A. Parameters in Inverse Gamma Prior
Distribution 
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The parameters of inverse gamma were given by Okada
et al. (2007). We briefly mention here how to determine
these parameters from observation data.

Suppose n random variables Xi = ln(Ti ), i = 1, ..., n
obey a normal distribution N (µ, σ 2) and take the variables
for mean of n variables and sum of squared residual from
mean, X = (1/n)

∑n
i=1 Xi and Y = ∑n

i=1(Xi − X)2, re-
spectively. The variable Y/σ 2 follows a chi-squared distri-
bution with n−1 degrees of freedom (e.g., Wilks, 1962) and
Y obeys a gamma distribution 
((n−1)/2, 2σ 2). Therefore
the PDF of Y with a prior of π(σ 2) is given as
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If we adopt an inverse gamma prior distribution 
R(φ, ζ )

for σ 2, the PDF for unbiased variance V = Y/(n − 1) is
written as follow;
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.

Since the likelihood for Q sequences is defined as

L =
Q∏

i=1

f (vi ; ni |
R (φ, ζ ))

where vi of xi = ln(Ti ) and ni are unbiased variance and
the number of time interval data for the i-th sequence, re-
spectively. Using the sequence unbiased variances of ob-
served xi = ln(Ti ) for many repeater sequences, we can es-
timate values of the parameters, φ and ζ , in inverse gamma
prior distribution with a conventional maximum likelihood
method.
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