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S U M M A R Y
Slip on major faults primarily occurs during ‘characteristic’ earthquakes. The recurrence
statistics of characteristic earthquakes play an important role in seismic hazard assessment.
A major problem in determining applicable statistics is the short sequences of characteristic
earthquakes that are available worldwide. In this paper, we introduce a rescaling technique in
which sequences can be superimposed to establish larger numbers of data points. We consider
the Weibull and log-normal distributions, in both cases we rescale the data using means
and standard deviations. We test our approach utilizing sequences of microrepeaters, micro-
earthquakes which recur in the same location on a fault. It seems plausible to regard these
earthquakes as a miniature version of the classic characteristic earthquakes. Microrepeaters
are much more frequent than major earthquakes, leading to longer sequences for analysis. In
this paper, we present results for the analysis of recurrence times for several microrepeater
sequences from Parkfield, CA as well as NE Japan. We find that, once the respective sequence
can be considered to be of sufficient stationarity, the statistics can be well fitted by either
a Weibull or a log-normal distribution. We clearly demonstrate this fact by our technique
of rescaled combination. We conclude that the recurrence statistics of the microrepeater
sequences we consider are similar to the recurrence statistics of characteristic earthquakes on
major faults.
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I N T RO D U C T I O N

Because of their complexity, earthquakes satisfy several scaling
laws with considerable robustness. The most famous of these is the
Gutenberg–Richter frequency-magnitude scaling. It can be shown
that this is equivalent to a fractal (power law) scaling between the
number of earthquakes and the linear dimension of rupture. The
cumulative number N c with rupture areas greater than Ar scales as
N c ∝ A−D/2

r , where the fractal dimension D ≈ 2.
Another property of seismicity that has been shown to satisfy

a universal scaling law is the statistical distribution of interoccur-
rence times. All earthquakes in a specified region and specified
time window with magnitudes greater than m are considered to be
point events. Based on studies of properties of California seismic-
ity, a unified scaling law for the temporal distribution of recurrence
times between successive earthquakes was proposed by Bak et al.
(2002). Two distinct scaling regimes were found. For short times,
aftershocks dominate the scaling properties of the distribution, de-
caying according to the modified Omori’s law. For long times, an

exponential scaling regime was found that can be associated with
the occurrence of main shocks. To take into account the spatial
heterogeneity of seismic activity, it has been argued that the second
regime is not an exponential but another power law (Corral 2003).

Shcherbakov et al. (2005) showed that the observed distribution
of interoccurrence times can be well approximated by a distribution
derived from assuming that aftershocks follow non-homogeneous
Poisson statistics with the rate given by Omori’s law.

The main focus of this paper is the scaling of recurrence times.
It is important to distinguish between the statistical distribution
of recurrence times between earthquakes on a specific fault or
fault section, and the interoccurrence times between earthquakes
on all of the faults in a region. This difference is clearly illus-
trated by the behaviour of the San Andreas fault in California.
Quasi-periodic sequences of great or moderate earthquakes include
great earthquakes on the northern section of the San Andreas fault
(the 1906 San Francisco earthquake), the southern section of the
San Andreas fault (the great 1857 earthquake) and moderate earth-
quakes (m ≈ 6) on the Parkfield section of the San Andreas fault in
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central California. Offsets on these faults are dominated by the
largest earthquakes. These earthquakes are generally known as
characteristic earthquakes. Detailed discussions of the relation-
ship between recurrence times and characteristic earthquakes have
been given by Turcotte et al. (2007) and Abaimov et al. (2007a,b,
2008).

Characteristic earthquakes are associated with quasi-periodicity,
but can also have considerable variability. A measure of the variabil-
ity of recurrence times on a fault or fault segment is the coefficient
of variation CV (the ratio of the standard deviation σ to the mean
μ). For strictly periodic earthquakes on a fault or fault segment, we
would have σ = CV = 0. For a random (i.e. exponential with no
memory) distribution of recurrence times, we would have CV = 1,
(i.e. σ = μ). Ellsworth et al. (1999) analysed 37 series of recur-
rent earthquakes and suggested a provisional generic value of the
coefficient of variation CV ≈ 0.5. A number of alternative distribu-
tions have been proposed for the purpose of specifying the statistics
of recurrence times. These include the exponential (Poisson), the
log-normal, Brownian passage-time (inverse Gaussian) and Weibull
(stretched exponential) distributions (Davis et al. 1989; Sornette &
Knopoff 1997; Ogata 1999; Matthews et al. 2002).

The statistical distribution of recurrence times of characteristic
earthquakes is important in defining the seismic hazard (Working
Group on California Earthquake Probabilities 2003). For example,
the last characteristic earthquake on the northern section of the
San Andreas fault in 1906 was responsible for the destruction of
much of San Francisco. It has been almost 100 yr since that chara-
cteristic earthquake and the mean recurrence interval of these char-
acteristic earthquakes is estimated to be about 200 yr. If these char-
acteristic earthquakes are periodic, then the next earthquake can
be expected in about 100 yr. If these characteristic earthquakes are
Poissonian, that is, have an exponential distribution, then the future
probability distribution would be exponential with a mean of about
200 yr independent of when the last earthquake occurred.

Ideally, observed sequences of earthquakes on a fault should be
used to establish the applicable statistical distribution for recurrence
times. However, the number of events in observed earthquake recur-
rence sequences is not sufficient to establish definitively the validity
of a particular distribution (Savage 1994). In this paper, we intro-
duce a rescaling technique in which sequences of interval times can
be superimposed. The result is that larger numbers of data points
can be used to test alternative statistical distributions. Our approach
can be used for the Weibull and log-normal distributions but not for
the Brownian passage-time distribution.

To test our approach we consider the recurrence time statistics
of microrepeaters, small earthquakes (m ≈ 1–2) which recur at the
same locations on a fault. We consider sequences that are not asso-
ciated with aftershocks and find that the recurrence time statistics
are stationary and have a similar behaviour to the recurrence time
statistics of characteristic earthquakes on major faults. Schaff et al.
(1998), Peng et al. (2005) and Peng & Ben-Zion (2006) have car-
ried out such studies during aftershock sequences and find that the
interval statistics are consistent with Omori’s law.

A P P L I C A B L E D I S T R I B U T I O N S

One objective of this paper is to determine whether there is a pre-
ferred distribution for recurrence time intervals of microrepeaters.
Two widely used statistical distributions for recurrence time inter-
vals are the log-normal and Weibull. We will compare each of them
with our data.

A primary objective of this paper is to superimpose recurrence
times for large numbers of microrepeaters to test alternative statis-
tical distributions. We will illustrate how this will be done for the
Weibull and log-normal distributions.

The probability distribution function (pdf) for a Weibull distri-
bution is given by (Patel et al. 1976)

p(t) = β

τ
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where �(x) is the gamma function of x. The corresponding cumula-
tive distribution function (cdf) for the Weibull distribution is given
by

P(t) = 1 − exp

[
−

(
t

τ

)β
]

. (4)

If β = 1 the Weibull distribution becomes the exponential (Poisson)
distribution with σ = μ and CV = 1. In the limit β → +∞, the
Weibull distribution becomes a δ-function with σ = CV = 0. In the
range 0 < β < 1, the Weibull distribution is often referred to as the
stretched exponential distribution.

An important property of the Weibull distribution is the power-
law behaviour of the hazard function

h(t0) = pdf

1 − cdf
= β

τ

(
t0

τ

)β−1

. (5)

The hazard function h(t 0) is the probability that an event will
occur during an interval δt0 at a time t0 after the occurrence of the
last event. For the Poisson distribution, β = 1, the hazard function
is constant h(t 0) = τ−1 and there is no memory of the last event.
For β >1, the hazard rate increases as a power of the time t0 since
the last event. We argue that the hazard rate must increase after a
characteristic earthquake. A characteristic earthquake reduces the
regional stress. Tectonic loading slowly increases the regional stress
until the next characteristic earthquake occurs. Complexity intro-
duces fluctuations in stress but the risk of the next earthquake must
increase with time. As a specific example consider 1906 San Fran-
cisco earthquake. The plate motion is loading the San Andreas fault
resulting in an increased probability of the next great San Francisco
earthquake.

Our rescaled combination approach for the Weibull correlations
is carried out as follows. We consider m sets of recurrence times
for m sets of microrepeater earthquakes. For the jth set, we have nj

recurrence times tij with i = 1, 2, . . . , nj. We order these times from
the shortest to the longest and construct the cumulative distribution
of the tij. We then obtain the best fit of the cumulative Weibull
distribution from eq. (4) to these values using a maximum likelihood
test and obtain τ j and β j. Using these values we have a renormalized
set of recurrence times given by (ti j/τ j )β j . This is repeated for the
m sets of microrepeaters.
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The values of the rescaled times are next ordered from smallest
to largest for all sets of microrepeaters. The cumulative distribution
of these values is then obtained. If the distributions are well approx-
imated by the Weibull then there will be a good fit to the exponential
relation given in eq. (4).

The pdf for a log-normal distribution of recurrence times t is
given by (Patel et al. 1976)

p(t) = 1

(2π )1/2σy t
exp

(
− (ln t − μy)2

2σ 2
y

)
. (6)

The log-normal distribution can be transformed into a normal
distribution by making the substitution y = ln t ; μy and σ y are the
mean and standard deviation of this equivalent normal distribution.
The mean μ, standard deviation σ and aperiodicity (coefficient of
variation) CV for the log-normal distribution are given by

μ = exp

(
μy + σ 2

y

2

)
, σ = μy

√
eσ 2

y − 1 and

CV = σ

μ
=

√
eσ 2

y − 1. (7)

The corresponding cdf P(t) (fraction of recurrence times that are
shorter than t) for the log-normal distribution is

P(t) = 1

2

{
1 + erf

[
ln t − μy

21/2σy

]}
, (8)

where erf(x) = 2√
π

∫ x
0 e−y2

dy is the error function.
Our rescaled combination approach for the log-normal correla-

tions is very similar to the approach used for the Weibull correla-
tions. Again we consider the m sets of recurrence times for m sets
microrepeater earthquakes. The recurrence times tij are ordered for
each j set and the cumulative distribution is plotted. We then obtain
the best fit of the cumulative log-normal distribution from eq. (8)
to the distribution by using a maximum likelihood test and we find
μyj and σ yj. Using these values we have a rescaled set of recurrence
times given by (ln t − μyj)/21/2σ yj. This is repeated for each of the
m sets of microrepeater earthquakes.

The values of the renormalized times are next ordered from small-
est to largest for all sets of microrepeaters. The cumulative distri-
bution of these values is then obtained. If the distribution is well
represented by the log-normal distribution then there will be a good
fit to the error function relation given in eq. (8).

Although the Weibull and log-normal distributions are the
most widely used distributions for recurrence time statistics, the
Brownian passage-time distribution has recently been used
(Matthews et al. 2002). We do not consider this distribution in
this paper because it is not possible to rescale it as we have done
for the Weibull and log-normal distributions. The reason for this
is that the mean μ enters the Brownian passage-time distribution
both as an additive and multiplicative factor. In the Weibull and log-
normal distributions, the fitting parameters are either multiplicative
or additive, they are not both. Thus it is not possible to rescale the
Brownian passage-time distribution as we have done for the Weibull
and log-normal distributions.

C A L I F O R N I A M I C RO R E P E AT E R
E A RT H Q UA K E S

Repeating sequences of small earthquakes in central California have
been widely studied. Some 300 clusters of these repeating earth-
quakes on the San Andreas fault have been recognized (Nadeau

et al. 1995; Schaff et al. 1998; Nadeau & McEvilly 1999, 2004).
Some clusters contain as many as 20 similar regularly occurring
‘characteristic’ micro-earthquakes. Each sequence has a common
hypocentre and very similar waveforms. They appear to be the re-
sult of periodic ruptures of an asperity on a creeping section of
a fault. Time intervals between characteristic micro-earthquakes
range from months to years with the intervals scaling with earth-
quake magnitude (Nadeau & Johnson 1998; Chen et al. 2007).
For similar repeaters on the Calaveras fault, Vidale et al. (1994)
and Marone et al. (1995) correlated time intervals with rupture
duration.

In some cases, the microrepeaters occur during aftershock se-
quences and rates of occurrence scale with Omori’s law (Schaff
et al. 1998; Peng et al. 2005; Peng & Ben-Zion 2006). In this paper,
we will concentrate our attention on sequences that exhibit station-
arity. We eliminate sequences that exhibit systematic trends in the
recurrence times. We will also only consider sequences that include
at least 10 intervals to obtain significant statistics for the distribution
of recurrence times.

We will consider sequences on the creeping section of the San
Andreas fault in central California. These sequences have been
previously studied by Nadeau et al. (1995), Nadeau & Johnson
(1998) and Nadeau & McEvilly (2004). We have studied in de-
tail 28 sequences. The locations of these sequences are given in
Fig. 1. Each sequence contained at least 11 events and covered about
20 yr, the earliest event was in 1984 and the most recent in
2005.

The majority of locations are on the creeping section north of the
Parkfield segment with only three locations on the locked Parkfield
segment. The numbering scheme seen in Fig. 1 will be used to
discuss individual sequences below.

Some sequences, for example, 21 and 24, show a shortening of
waiting times towards the end, that is, acceleration in the failure
process. There is also evidence of deceleration and missing data in
sequence 12.

We estimate the number of missing characteristic events to be on
the order of 5 per cent in general. The reason is that both catalogue
entries and waveforms from the Northern California Seismic Net-
work (NCSN) are required to identify members of microrepeater
sequences (characteristic sequences, CSs), however, the procedure
is not yet optimized for the smaller microrepeating events. Cat-
alogue entries are generally available before their corresponding
waveforms. The waveforms are available only after an analyst re-
views the data and finalizes the event, and in some cases, waveforms
are not made available even after review due to the small magni-
tudes of the events considered. However, as with any seismological
network, when large event aftershock sequences occur, small events
are missed due to network saturation and in addition the review and
finalization process falls behind. For the data sets considered here,
we therefore expect about 15–20 per cent missing events during
the first month after the 2003 December 22 San Simeon M = 6.5
earthquake for example.

Only six sequences could be considered to be stationary without
any data manipulation. These are marked in red in Fig. 1. No satis-
factory fits of any distribution can be obtained for recurrence time
data of non-stationary sequences. In the following, we will concern
ourselves with stationary data only.

Properties of the six sequences we consider are given in Table 1.
Included in this table are the set number, the number of events n,
mean magnitude m̄, mean recurrence time μ, coefficient of varia-
tion CV and the Weibull parameters τ and β for each sequence. The
number of events range from n = 12–14, the magnitudes range
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Figure 1. Locations of microrepeater sequences that occurred during the last ≈20 yr on the Parkfield segment and the neighbouring creeping section of the
San Andreas fault. Each numbered location corresponds to a sequence of at least 10 repeating events. Data of sufficient stationarity are marked in red. Note
small average magnitudes.

Table 1. Properties of the six sets of repeating micro-earthquakes from the
Parkfield region that we consider.

Set n m̄ μ (days) CV τ (days) β

2 14 2.07 559 0.25 611 4.78
8 13 1.62 501 0.24 598 4.96
9 13 1.36 509 0.38 572 2.91
10 14 1.84 561 0.27 618 4.36
14 14 1.95 500 0.20 541 5.42
23 12 2.22 654 0.33 728 3.35

Note: included are the set number, number of events n, mean earthquake
magnitude m̄, mean recurrence time μ, coefficient of variation CV and the
Weibull parameters τ and β.

from m̄ = 1.36 − 2.22, the mean recurrence times range from
μ = 500–655 days, and the coefficients of variation range from
CV = 0.20–0.38. The mean of the coefficients of variation is CV =
0.278.

As a typical example we illustrate set 9 in Fig. 2. The cdf P(t)
of the 13 recurrence times t is given. Also included is the best-fit
Weibull distribution from eq. (4). The fitting parameters are τ =
572 days and β = 2.91. The values of (t/τ )β are then obtained
for the 13 recurrence times. For example, the shortest recurrence
time is t = 252 days so that (t/τ )β = 0.092. When this process is
carried out for the six sets we have 80 values of (t/τ )β . The cdf
P([t/τ ]β ) of these values of (t/τ )β is given in Fig. 3. Based on the
applicability of the eq. (4) the fit of these data to the exponential
distribution is also given in Fig. 3. The log likelihood of this fit is
−74.0.

We next consider the fit to a log-normal distribution. To illustrate
our approach we again consider set 9 illustrated in Fig. 2. From
Table 1 we have μ = 509.92 days and σ = 195.31 d. From eq. (7)
we find that μy = 6.166 and σ y = 0.370 with μ and σ in days. The
values of [(ln t–μy)/21/2σ y] are then obtained for the recurrence
times. For example, the shortest recurrence time is t = 252 days
so that [(ln t–μy)/21/2σ y] = −0.741. When this process is carried
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Figure 2. The cdf P(t) of the 13 recurrence times t for data set 9 of Parkfield repeating micro-earthquakes. Also included is the best fit of the cumulative
Weibull distribution from eq. (4) taking τ = 572 days and β = 2.91.

Figure 3. The cdf P([t/τ ]β ) of the 80 values of [t/τ ]β for the six Parkfield data sets that we have considered. Also included is the exponential dependence
given in eq. (4) for a Weibull distribution.

out for the six sets we have 80 values of [(ln t–μy)/21/2σ y]. The
cdf P([(ln t–μy)/21/2σ y]) of these values is given in Fig. 4. Based
on the applicability of eq. (8) the best fit of the data to the error
function distribution is also given in Fig. 4. The log likelihood of
this fit is −76.2. This value is very close to the value −74.0 for the
Weibull distribution so that it is not possible to clearly prefer one
distribution over the other.

M I C RO R E P E AT E R E A RT H Q UA K E S
I N T H E N O RT H E A S T E R N JA PA N
S U B D U C T I O N Z O N E

Repeating sequences of small earthquakes in the northwestern sub-
duction zone have also been widely studied (Matsuzawa et al. 2002;
Igarashi et al. 2003; Uchida et al. 2003, 2006). More than 300
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Figure 4. The cdf P[(ln t–μy)/21/2σ y] of the 80 values of (ln t–μy)/21/2σ y for the six Parkfield data sets that we have considered. Also included is the expected
fit to the error function dependence given in eq. (8) for a log-normal distribution.

clusters of these repeating earthquakes have been recognized. It has
been hypothesized that these earthquakes are caused by slips on
small asperities surrounded by aseismic slip on the plate bound-
ary. We have applied the same approach described for California to
select 27 data sets that exhibit steady-state behaviour.

Properties of 27 data sets we consider are given in Table 2. In-
cluded in this table are the set number, the number of events n,
the mean magnitude m̄, mean recurrence time μ and the coefficient
of variation for each sequence. The number of events ranges from
n = 10–28, the mean magnitudes range from m̄ = 2.30−3.54, the
mean recurrence times range from μ = 276 days to 825 days and the
coefficients of variation range from CV = 0.362–1.17. The mean of
the coefficients of variation is CV = 0.564. It is interesting to note
that this is more than twice as large as the value for the California
data. The variability of the recurrence times on the strike-slip fault is
much smaller than the subduction zone fault. The difference may be
attributed to the greater complexity of the subduction zone microre-
peater earthquakes relative to the near planar strike-slip behaviour
of the California microrepeater earthquakes.

As a typical example we illustrate set 294 in Fig. 5. The cdf P(t) of
the 23 recurrence time t is given. Also included is the best-fit Weibull
distribution from eq. (4). The fitting parameters are τ = 370 days
and β = 3.89. The values of (t/τ )β are then obtained for the 23
recurrence times. When this process is carried out for the 27 data
sets we have 405 values of (t/τ )β . The cdf P([t/τ ]β ) of these values
of (t/τ )β is given in Fig. 6. Based on the applicability of the eq. (4)
the fit of these data to the exponential distribution is also given in
Fig. 6. The log likelihood of this fit is −377.

We next consider the fit to a log-normal distribution. For set 294
illustrated in Fig. 5, we have μ = 334 days and σ = 102 days from
Table 2. From eq. (7) we find that μy = 5.77 and σ y = 0.297 with μ

and σ in days. The values of [(ln t–μy)/21/2σ y] are then obtained for
the 23 recurrence times in this set. When this process is carried out
for the 27 data sets we have 405 values of [(ln t–μy)/21/2σ y]. The
cdf P([(ln t–μy)/21/2σ y]) of these values is given in Fig. 7. Based on
the applicability of eq. (8) the best fit of the data to the error function

Table 2. Properties of the 27 sets of repeating micro-earthquakes from the
Tohoku region, Japan, that we consider.

Set n m̄ μ (d) CV

139 10 2.83 608 0.365
174 17 2.78 290 0.361
177 10 2.59 347 0.414
243 13 2.46 562 0.656
250 14 2.95 520 0.616
252 20 2.77 325 0.621
260 14 3.37 521 0.473
274 28 2.54 275 0.393
276 12 3.14 484 0.643
282 11 3.48 558 1.166
293 10 3.57 782 0.708
294 23 3.31 334 0.303
397 20 2.74 394 0.570
399 13 3.25 588 0.813
400 15 2.30 411 0.896
428 10 2.83 803 0.662
432 22 3.05 338 0.526
434 26 2.62 279 0.436
523 14 3.22 464 0.390
545 14 2.96 477 0.553
550 11 2.95 725 0.582
574 10 2.45 825 0.432
580 15 3.19 516 0.415
673 11 3.05 650 0.459
676 14 2.80 554 0.567
781 15 3.17 477 0.639
800 13 3.43 565 0.567

Note: included are the set number, number of events n, mean earthquake
magnitude m̄, mean recurrence time μ and coefficient of variation CV.

distribution is also given in Fig. 7. The log likelihood of this fit is
−390. Again this value for the fit of the log-normal distribution is
close to the value −377 for the Weibull distribution so again it is
not possible to definitely prefer one distribution over the other.
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Figure 5. The cdf P(t) of the 23 recurrence times t for data set 294 of the Tohoku repeating micro-earthquakes. Also included is the best fit of the cumulative
Weibull distribution from eq. (4) taking τ = 370 days and β = 3.89.

Figure 6. The cdf P([t/τ ]β ) of the 405 values of [t/τ ]β for the 27 Tohoku data sets that we have considered. Also included is the exponential dependence given
in eq. (4) for a Weibull distribution.

D I S C U S S I O N

The purpose of this paper has been to consider two aspects of re-
currence time statistics of characteristic earthquakes on a fault or
fault segment. These are (1) the application of a rescaling tech-
nique and (2) the behaviour of the recurrence time statistics of
microrepeater earthquakes. Recurrence time statistics of character-
istic earthquakes play an important role in seismic hazard assess-
ment. But the number of well-established sequences of character-
istic earthquakes is small and the number of earthquakes in each

sequence is also small. Thus it has been difficult to establish the va-
lidity of alternative statistical distributions. In this paper, we intro-
duce a rescaling technique in which sequences of interval times can
be superimposed. The result is that larger numbers of data points can
be used to test alternative statistical distributions. Our approach can
be used for the Weibull and log-normal distributions but not for the
Brownian passage-time distribution. The reason for this is that the
two fitting parameters in the Weibull and log-normal distributions
are either additive or multiplicative but not both. For the Weibull
distribution we rescale utilizing the rescaled times ti jrs = (ti j/τ j )β j
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Figure 7. The cdf P[(ln t–μy)/21/2σ y] of the 405 values of (ln t–μy)/21/2σ y for the 27 Tohoku data sets that we have considered. Also included is the expected
fit to the error function dependence given in eq. (8) for a log-normal distribution.

where tij are the i interval times of data set j and τ j and β j are the
Weibull fitting parameters for set j. For the log-normal distribution
we rescale utilizing the rescaled times t i jrs = (ln tij − μyj)/21/2σ yj,
where μyj and σ yj are the log-normal fitting parameters for data set
j. For the Brownian passage-time distribution the fitting parameter
μ additive and multiplicative (see eq. 12 in Matthews et al. 2002)
so that rescaling is not possible.

As a test of our rescaling approach we consider six stationary
sequences of microrepeater earthquakes on the San Andreas fault
in central California and 27 stationary sequences of microrepeater
earthquakes in northeastern Japan.

We consider the two sets separately and introduce our rescaled
technique for both the Weibull and the log-normal distribution. For
each sequence we obtain the best-fit fitting parameters for the two
distributions. This constitutes a rescaling and the six (27) sequences
are then combined to form a single statistical set each. For the
Weibull distribution the cdf of the values of (t/τ )β is expected to
fit an exponential distribution. These fits are given in Fig. 3 for the
California data and in Fig. 6 for the Japanese data. For the log-
normal distribution the cdf of the values of [(ln t–μy)/21/2σ y] is
expected to fit an error function distribution. These fits are given in
Fig. 4 for the California data and in Fig. 7 for the Japanese data.
The log-likelihood fits for the four data sets are: California Weibull
−74.0 and log-normal −76.2, Japan Weibull −377 and log-normal
−390. Although the fits are quite good it is not possible to clearly
establish a preference for one of the two distributions based on
these data sets. This is despite analysis of data sets of unprecedented
lengths obtained from our novel method of rescaled combination.
The main reason is the absence of extremely long waiting times, that
is, the lack of samples from the tails of the distributions. The tails
of the two distributions differ while they are very similar otherwise.
It would be interesting to apply rescaled combination to other time-
series such as volcanic eruption sequences.

It is also of interest to compare the statistical behaviour of the
recurrence times of the microrepeater earthquakes with related phe-
nomena. We have shown that the distributions of recurrence times
for our two sets of data can be well approximated by either the
Weibull or the log-normal distribution. This is also the case for char-
acteristic earthquakes under a variety of circumstances (Abaimov
et al. 2007a,b, 2008; Turcotte et al. 2007). A measure of the vari-
ability of recurrence times is the coefficient of variation. For the six
sequences we considered for the San Andreas fault we found that
the mean value of the coefficient of variation is CV = 0.278. The
coefficient of variation for the seven characteristic earthquakes that
have occurred on the Parkfield section of the San Andreas fault is
CV = 0.378 (Abaimov et al. 2008). These values tend to be some-
what lower than the usual value near CV = 0.5 (Ellsworth et al.
1999). Abaimov et al. (2007a) studied the recurrence time statistics
of slip events on the creeping section of the San Andreas fault in
central California. The slip events typically had magnitudes of a
few millimetres and were aseismic. The distributions were shown
to fit Weibull statistics to a good approximation. The 67 events
recorded at 10min intervals at the Cienega Winery creepmeter had
a coefficient of variation CV = 0.554. Clearly the values for the
creepmeter slip events are higher than the values for the microre-
peater earthquake sequences. For the 27 sequences of microrepeater
earthquakes we studied from northwestern Japan the mean value of
the coefficient of variation is CV = 0.564. This is a value that is
typical of sequences of characteristic earthquakes.
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