第190回 地震予知連絡会

2011年4月26日

東北大学大学院理学研究科

1-1. GPS 観測から得られたすべり量分布

図1(左):陸上 GPS 観測点で得られた地震時変位分布から推定されたプレート境界面上での地震時すべり分 布. プレート境界モデルは Nakajima and Hasegawa (2006)のものを用いた. 解析は Iinuma (2009)による, Matsu'ura et al. (2007)を改良した, ABIC 最小化による拘束条件の重みを最適化するインバージョン手法を 用いて行った. 水平成分・上下成分ともに同じ重みで用いているが,GEONET 田老の観測値のみ,周囲に比 して特異な動きをしていたため,重みを下げている.すべり分布の等値線間隔は5m.紫の実践で囲まれた範 囲及び紫の矢印は,解析誤差を超える値が推定されている範囲及びすべりベクトルを示す.本震及び 4 月 7 日の余震のメカニズム解(USGS,W-phase 解析によるもの)を震源球で,本震震央を黄色の星で示す.黒の破線 は Igarashi et al.(2001)による低角逆断層型地震の西縁線.灰色の等値線は過去の大地震の破壊域を示す. 2003 年十勝沖,1968 年十勝沖,1978 年宮城県沖,1981 年宮城県沖,1936 年宮城県沖,2003 年福島県沖, 1938 年塩屋崎沖についてプロットしてある(Yamanaka and Kikuchi, 2003, 2004;室谷,2003).最大すべり 量は約 35m,また,宮城県沖深部では最大19m のすべりが推定された.主破壊域はプレート境界深度 30km 以浅にあり,上盤側が地殻になっている部分と対応していると考えられる.1968 年の十勝沖地震の震源域に は破壊は及んでいない.

(右): 推定誤差の空間分布. 等値線間隔は5m.

図2:観測された変位と推定された地震時すべり分布から計算される変位との比較. (左上):水平成分.黒塗りが観測値,白抜きが計算値.固定点はGEONETの三隅(島根県浜田市). (右上):水平成分の残差.

(左下):上下成分.黒塗りが観測値,白抜きが計算値.固定点はGEONETの三隅(島根県浜田市) (右下):上下成分の残差.赤は観測値が計算値より大きいことを,青は観測値が計算値より小さいことを示す. すなわち,赤は計算値が沈降過剰もしくは隆起不足,青は計算値が沈降不測もしくは隆起過剰であることを示 している. 東北大学大学院理学研究科・東京大学地震研究所・気象研究所・海洋研究開発機構

1-2 (a). 海底圧力計により捉えられた 2011 年東北地方太平洋沖地震に

伴う海底地殻上下変動

2011 年東北地方太平洋沖地震 M9.0 が発生した 3 月 11 日時点で,その震源域内では,東京大学の三陸沖光 ケーブル式海底地震・津波観測システムを含む複数の観測点において,海底圧力の連続観測が行われていた. ここでは,三陸沖ケーブルシステムの2観測点と,宮城県はるか沖に設置されていた自己浮上式海底圧力計1 観測点(図1-2-1)で捉えられた地震時地殻変動について報告する.

図 1-2-1. 海底圧力観測点の配置図. TM1 と TM2 は三陸沖ケーブルシステムの津波観測点. BT1 は自己浮上 式海底圧力計.

東北大学大学院理学研究科・東京大学地震研究所・気象研究所・海洋研究開発機構

図 1-2-2 は三陸沖ケーブルシステムの津波計で捉えられた海底圧力変動の記録である. 10Hz サンプルの生デ ータに対して 60 秒の移動平均を施した後,NAO.99Jb[Matsumoto et al., 2000]に基づく理論潮汐による圧力 変動を取り除いたものである. 地震が発生した後,相対水位は次第に上昇し,5m に及ぶ大きな波高の津波を 記録した後,地震発生からの経過時間が 30 分程度で相対水位は一定値に近づくように見え,この相対水位が 2 観測点における海底上下変動量を反映している可能性がある. TM1 では 0.8m 程度,TM2 では 0.3m 程度 の水位の上昇であり,それぞれの量の海底の沈降に対応する. ただし,三陸沖ケーブルシステムは陸揚げ局の 被災により 15:17 頃からデータが途絶しているため,正確な地殻変動量の見積もりは困難である.

図 1-2-2. 三陸沖ケーブルシステムの海底津波観測点 TM1 および TM2 で捉えられた圧力変動.

1-2 (b). GPS 音響結合式海底地殻変動観測により捉えられた

2011 年東北地方太平洋沖地震に伴う海底地殻変動

2011 年東北地方太平洋沖地震 M9.0 の震源域に含まれる宮城県沖海域では,2 観測点に GPS 音響結合式海底 地殻変動観測のための海底基準局が設置されている.ここでは,これら2 観測点において 2010 年 11 月におい て実施した測量と 2011 年 4 月に実施した測量結果の差から,地震時変動量を求めた. 観測点 GJT3 では,東 向き変位量が 29 m,南向き変位量は 11 m で,水平変動量は 31 m (±1m)と推定された. GJT4 での東向き変 位量は 14 m,南向き変位量は 5 m で,水平変位量は 15 m (±1m)であった.さらに,上下方向の変位も認めら れ,GJT3 では 5 m(±2m)の隆起,GJT4 では,3.5 m (±2m)の隆起であった.推定誤差が通常の観測(~数 cm) より大きいのは、観測時間が極端に制限されていたためと、応答しない海底局があったためである。

なお、GJT3 および GJT4 はいずれも、3/9 に発生した M7.3 の前震の震源域に近いため、ここで測定された変動 量は前震に伴う地震時変動とその余効変動の影響を含む. M7.3 の断層モデル(東北大・別報告)によれば、 GJT3 および GJT4 での前震にともなう地震時水平変動量は、それぞれ 22 cm、5 cm となり、現時点での計測誤 差以下である.余効変動はさらに小さいと考えられる。一方、今回の観測は、M9.0 の本震発生後 1 ヶ月後に 実施されたものであるため、相当規模の余効変動の影響を含む. GJT3 では海底圧力の連続観測を実施してい るため、今後は、その時系列を用いて本震時変動と余効変動の分離を試みる必要がある

図 1-2(b)-1. GPS 音響結合方式海底地殻変動により観測された 2011 年東北地方太平洋沖地震に伴う海底水平 変動. GJT3 および GJT4 の 2 観測点で,31mおよび 15 m におよぶ水平変動が測定された. 図中の矢印が各 観測点における変位の方向を示す. BT1 は海底圧力観測により 5 m の隆起が地震発生時に観測された地点.

2-1 小繰り返し地震から推定される固着の剥がれ

波形の相似性を利用して抽出した小繰り返し地震の積算すべりから、プレート境界での準静的すべり の時空間変化を推定した.

図 2-1-1. 太平洋プレート上面での3年ごと(各図の左上に解析期間表示)のすべりレート(カラー)赤星 は 70km 以 浅 の M7 以 上 の 地 震 , 2 つ の 矩 形 は 国 土 地 理 院 に よ る 本 震 断 層 モ デ ル (http://www.gsi.go.jp/cais/topic110313-index.html). 図中のコンターは Yamanaka and Kikuchi,EPS, 2003, JGR, 2004 による 2003 年十勝沖地震, 1994 年三陸はるか沖地震のすべり量分布. 黒太線は Uchida et al., EPSL, 2009 によるフィリピン海プレートの北東限で,これより南のすべりレートは解析の都合上, 暫定値となっている. 震源断層の updip(浅い側)で,<u>海溝に沿って 2008 年以降これまで見られなかった</u> 速いすべり速度が見られる(右上図の赤楕円付近). その南北の拡がりは,おおよそのすべり域と一致する. このような海溝沿いでの広域のすべり加速は過去には見られなかった.

2.2. 2011 年 3 月 9 日三陸沖地震 (M7.3) -GPS, 地震活動, 水圧計から推定される前震の破壊過程-

2011年3月9日に発生した三陸沖地震(M7.3)の地震時断層モデルを、東北大学のGPS観 測網及びGEONET観測点と東北大学の海底水圧計データを用いて推定した.GPS観測点では 最大で2cm程度の東向き変位が観測された.震源からおよそ50km西北西にある海底水圧計で は2.1hPaの水圧減少(2.1cmの観測点隆起)が観測された.これらを満足する断層モデルは 1981年(M7)の東側および2011年3月11日に発生した東北地方太平洋沖地震(M9)の北側に位 置する.また、3月9日の地震から3月11日のM9の地震間に発生した余震活動の推移を詳細 に見ると、M7.3の地震発生後10時間後では推定された震源断層周辺に余震が集中しているが、 次の10時間ではそれが南側に拡大しているように見える.これは地震発生後20-30時間後でも 同様である.またM9の震央より南側にM7.3の余震は存在しない.これらは地震発生後余効滑 りが南側に進展し、すべりの先端部分に応力集中が起きたことにより余震が発生した可能性を 示唆する.

図 2-2-1. (左図) 観測された水平変動場および推定された断層モデルから期待される水平変動場. 推定された断層面を赤矩形で示す. 青色菱形は海底水圧計の位置を示す. 灰色丸印は 2011 年 3 月 9 日以降 3 月 11 日までの地震の震央を示す. 赤星印はそれぞれ(北側)1980 年(M7.0)の震央, (南側) 2011 年(M9)の震央を示す. メカニズム解は防災科研 F-net によるもの. (右図) 海底水圧 計における地震時の時系列. 地震前と地震後に明瞭なオフセットが見られる.

図. 2-2-2. 2011 年 3 月 9 日の M7.3 地震後からの余震の時空間発展. 各パネルは M7.3 地震後からの 10 時間毎の余震分布を示す. 右下図は全期間の余震分布を示す. 各図中の星印は(a): 2011 年 3 月 9 日 M7.3 地震 (b): 1981 年 M7.0 地震, (c): 2011 年 3 月 11 日(M9.0) 地震の震央をそれ ぞれ示す. 各余震の色は M7.3 地震後からの経過時間を示す. 0-10 時間では震源断層周辺に余 震が集中しているのに対し, それ以降では特に南側に余震が広がっているように見える.

2-3. 本震直前の金華山観測点等でのひずみ変化

図2-3-1. 本震直前の金華山(KNK)観測点での体積ひずみ変化. 2007年3月~2008年3月の期間に求めた係数から 潮汐と気圧をBAYTAP-Gで補正. 10 nstrainのひずみが本震震源でのMw6.3相当. 挿入図は気象庁(2011)に加筆.

図2-3-2. 本震直前の江ノ島(EN3)観測点での3成分ひずみ変化.

図2-3-3. 本震直前の遠野(KGJ)観測点での体積ひずみ変化.

図2-3-4. 本震直前の普代(FDA)観測点での体積ひずみ変化.

3-1 小繰り返し地震から推定されるカップリング率の分布

小繰り返し地震の積算すべりから求めた、プレート境界での準静的すべり領域のすべりレートをプレ ート収束速度で割ることで、プレート間カップリング率の空間分布を求めた.

図 3-1-1. 1993-2007 年の小繰り返し地震(黒点)のすべりレートから計算された太平洋プレート上面のカップ リング率の分布. コンターは GPS 観測から求められた本震の地震時すべり量の分布(Iinuma et al., 2011). コ ンター間隔は 5m で福島県南部以南のデータを解析に用いていないため,茨城県沖については誤差が大きい. 黒 星は気象庁による本震の震央,黒太線は Igarashi et al., 2001, Uchida et al. 2009 によるプレート境界型 地震の西縁,破線はフィリピン海プレートの北東限(Uchida et al, 2009)を示す. 地震時すべりは小繰り返し 地震の密度が比較的小さい宮城県沖に最大値を持つ. フィリピン海プレートが太平洋プレート上に存在する領 域(破線より南), プレート境界型地震西縁付近(実線沿い)および岩手県沖(北緯 39-40°N)では比較的プレ ート間カップリング率が小さく,その領域に地震時すべりはあまり及んでいない. また海溝沿いのカップリン グ率も大きい.

4-1. 本震による最大主応力軸の回転 -本震により応力はどの程度解放されたか?-

図 4-1-1. 2011 年 Mw9.0 東北沖地震前後の応力場。A 1997 年~2011 年 3 月 10 日, B 2011 年 3 月 12 日~4 月 6 日の期間に, 挿入地図に示す領域 N(北側) および領域 S(南側) 内に発生 した地震のメカニズム解を用いて, 応力テンソルインバージョンにより求めた σ_1 軸(赤丸), σ_2 軸(緑丸), σ_3 軸(青丸)を, 各図の右側に下半球投影で示す。左側の図は, メカニズム解 の P(赤丸), T(緑丸), B(青丸) 軸を示す。メカニズム解は,防災科学技術研究所の F-net による CMT 解から, プレート境界を中心にして深さ方向に幅 25km の範囲に震源が決まったも のを用いた。

図 4-1-2 σ1軸が断層面となす角の時間変 化。1997 年~2004 年,2000 年 5 月~2007 年 5 月,2004 年~2011 年 3 月 10 日,2011 年 3 月 12 日~4 月 6 日の期間の領域 N(上 図)および領域 S(下図)についての結果 を示す。

東北大学大学院理学研究科

OStress rotation due to slip on fault

図 4-1-3. 断層滑りに伴う σ_1 軸の回転(Hardebeck and Hauksson, 2001)。 σ_1 軸と断層面となす角 θ とその回転 角 $\Delta \theta$ (下図模式図参照)との関係を $\Delta \tau / \tau$ の値をパラメーターとして示 す。ここで τ は断層面に働くせん断応 力、 $\Delta \tau$ はストレスドロップ。観測さ れた領域Nおよび領域Sの回転角を赤 丸で示す。

● 結果

- ・ $\Delta \tau / \tau \sim 0.9$ -0.95 地震前の応力は、東北地方太平洋沖地震の発生によってほとんど解放された or 応力降下はほぼ完全だった
- ・地震後、太平洋下の浅い地震(余震)の中に、正断層型の余震が多数発生しているのは、 それが原因である

 ・GPS データに基づく slip model から推定された average stress drop Δ τ ~20MPa (linuma et al., 2011) 従って、地震前のせん断応力τ~22MPa, 強度~22MPa → weak fault

・overpressured fluids によると考えて、間隙流体圧比 $\lambda = P_f / \sigma_n$ (間隙流体圧と法線応力の比)を推定する

 $\tau = c + \mu (1-\lambda) \sigma_n$ c=0, $\mu = 0.6$ とし、 σ_n を深さ 25km での被り圧で近似して 間隙流体圧比 $\lambda = \sim 0.94$

東北大学大学院理学研究科・2011 年東北地方太平洋沖地震合同観測グループ 4-2. 2011 年 4 月 7 日宮城沖地震(M7.1)の断層モデル

2011 年 4 月 7 日に発生した宮城県沖地震(M7.1)の地震時断層モデルを、東北大学の GPS 観 測網及び GEONET 観測点を用いて推定した.水平変位は沿岸部で北向き変位から南西向き変位、 内陸部でわずかな東向き変位が確認された.鉛直変位では沿岸部で隆起傾向が確認され、これ ら変位場の特徴は、この地震がプレート境界で発生したものではなく、プレート内で発生した 地震であることを強く示唆する.これらの GPS データより推定された断層モデルは、余震分布 (東に傾き下がる分布)と良い一致を示す.また 2011 年 3 月 11 日に発生した東北地方太平洋沖地 震(M9)の地震時すべり分布(第 190 回予知連資料(東北大資料))と比較すると、宮城沖で 10m を 超えてすべった領域の直下に位置する.

図. 4・2・1.(上表)推定された断層モデルの諸パラメータ,(中図)観測された水平変動場(左図) および推定された断層モデルから期待される水平変動場(右図)推定された断層面を赤矩形で 示す.灰色丸印は2011年3月11日以降4月10日までの地震の震央分布.青丸印は4月11日 以降の地震の震央を示す.(下図)震源域を横切る深さ方向のクロスセクション.中左図中の A-A'断面を示す.赤太線が推定された断層面.沈み込むプレート上の太黒線,太灰色線は東北地 方太平洋沖地震(M9)の地震時すべり分布(第190回予知連資料(東北大資料))においてそれぞれ 10m, 5m以上すべった領域を示す.

4-3 釜石沖の M5 の活動について

岩手県釜石沖の地震クラスターでは、1957年以降、およそ5年間隔でM5前後の地震の発生が知られていたが、今回の地震後、その地震クラスターでM4.5以上の地震が3回起きていたことが分かった.

図 4-3-1. (a)気象庁の読み取り値に基づき、ダブル・ディファレンス法で決定した 1994 年以降の震源 分布.赤色は 2011 年東北地方太平洋沖地震後の地震を示す。(b)この地震クラスターでの 1957 年以降の 地震の M-T 図 (ただし 1975 年以前は M5 前後の地震の系列のみ). <u>今回発生した地震は、本震の約 1 時間</u> 後,4 日後,及び9 日後に発生し、うち 2 つはこれまでよりもマグニチュードが 1 程度大きい.これまで、 周囲の大地震により、発生間隔が変化することは知られていた(Uchida et al., EPSL, 2005)が、その揺 らぎは、最大でも 1 年程度であった.この 3 つの地震のすべり域が重なっていると考え、そのすべり量 の積算値を小繰り返し地震のすべり量の推定に用いている Nadeau and Johnson (1998)のスケーリング により求めると 180cm となる.

	ita) 図1. 断層面とクーロン応力変化.	3-14 メカニズム解と震源分布などから 3-14 推定される断層面(太線で示す節) 面)に対するクーロン応力変化の	3-28 値を○の色で示す. Coulomb3.2 (Lin and Stein, 2004; Toda et	Tazawa) dl., z000)を19.HD/2. い9.400 断層に対しても、クーロン応力変 化については正の値が推定され	 ている. ここでは東北地方太平洋沖地震のすべり量分布としては, linuma 	et al. (2011)を使用した. 摩擦係 数は0.65としている. キャ+ナ 49ホードル電油 F	8917年で、XXX11 70111度(Winter る 3/11-4/11の深さ20kmより浅い Mann 地震の震央分布(黒丸), 灰色の。	 【は3/11以前の浅い地震の震央分 布を示す. ☆はM5以上の地震を →23 ポオ 3/11以降の注軸は3/11以) 前に活動の高い領域およびその -11 周辺におよそ見られる.) Irakai				
	₹ v v	0' CAkita	O' C. Akita	0' CAkira_(.0	0' Aizu-sv	0' Iwaki 3		0' Kita-Iba	-0	. 0	-0	
~ ノニバキロ	142° 41°0	40°3(40°00	39°3(39°0(38°3(° ∦ 38°0(第 37°3(37°0(هد د 36°3(هم چې 36°0(35°3(35°0	c
〒 ~ ~ ~ 「 」 「 」 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	141°	• 6 •	0 0 0 0 00 0	0 9 200- ^{0. 48}	ب ^{عرد} ، ،	went to	\sum_{\circ}	•• • • • ↓ • •	°				, o.∷ o.: o	100 kn
	140°	*** 			م م	•	e ↓ •) • •	J.		° /** ~~~	
	139°) 		9 9		J.	000000	°°°°°			0 0 0		(1	
	138°	- (MPa) 0.5 0.4		00000 004r	c.D-	о С о С о о	50°°°°			وه می او او می			8000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Z i i i i i i i	137°				•			° (م	<u>د کې</u> ۱	् २ २		oka oso o	0	
- 5 -		Akita-0)					:				E. Shizur)	

4-4. 3/11からの東日本(特に東北地方)の内陸の地震活動について (1) ^{東北大学・2011年東北地方太平洋沖地震合同観測グループ}

AQUA-CMT解を示す. これらより東ないし南東方向に傾斜した よる再決定震源分布(-4/6):北西-南東方向の断面図(上)と震 余震の並びが断層面であると考えられる. ☆は1955年ニツ井 図2.2011/4/1秋田県北部の地震について得られた, DD法に 央分布図(下)を示す. 右上には防災科学技術研究所の 地震(断面図では震央を示している.

面図と震央分布図を示す、地震の押し引きによるメカニズム解 を示す、3/30の地震の余震は南北方向に並んでいる様子が見 図3.秋田県中部(田沢湖周辺)の地震について得られた,DD 法による再決定震源分布:南北方向(左)と東西方向(右)の断 られ、南北方向の節面が断層面であると考えられる、

5-1. 東北大学 GPS 観測点および GEONET における 東北地方太平洋沖地震後の余効変動

東北大学の GPS 観測点および国土地理院 GEONET 観測点のデータを用いて 4 月 18 日分ま での余効変動時系列を抽出した.解析には Bernese GPS Software Ver.5.0 の基線解析を用いた. 各時系列は IGS 点に準拠後,水平変動に関しては GEONET 1093 (鹿児島県 大根占)を固定点, 上下変動に関しては楕円体高の変化をそれぞれ示している.得られた時系列は水平成分で顕著 な余効変動を示す.対照的に上下変動では水平成分と比較して余効変動は小さいが,岩手県沿 岸部では沈降傾向,宮城県沿岸部でわずかに隆起傾向が確認できる.また牡鹿半島の観測点で は 4/7 に発生した宮城県沖のスラブ内地震 (M7.1)による 2-3cm 程度の隆起が確認できる.

図 5-1-1. 観測点配置図. 桃色丸印が東北大学の観測点,水色丸印が原子力安全基盤機構(JNES) の観測点,緑色が GEONET の観測点をそれぞれ示す.青色丸印は国土地理院と東北大学の共同研究観測点. 図中各矩形領域は次図以降で時系列を示す領域を表す.

東北大学大学院理学研究科

Region 2.

Region 3.