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A large earthquake (M7.2) occurred along the plate boundary off Miyagi Prefecture (Miyagi-Oki), northeastern 

Japan, on August 16, 2005. In this area, large earthquakes (～M7.5) have occurred repeatedly at intervals of 

about 37 years, and it has passed more than 27 years since the last event occurred. To estimate the relationship 

between this earthquake and the previous events, we determined coseismic slip distribution by this 2005 

Miyagi-Oki earthquake by adopting the seismic waveform inversion method of Yagi et al.(2004) and compared 

with that of the previous 1978 Miyagi-Oki earthquake. We performed two cases of the inversions; inversion 

using only far-field seismograms, and that using far-field seismograms and local seismograms simultaneously. 

Both results show that large slip occurred near the hypocenter and rupture extended to the westward deeper 

portion. The rupture area of the 2005 event partly overlapped with the southeastern part of that of the 1978 

event. This result possibly suggests that there exists plural asperities which cause the sequence of Miyagi-Oki 

earthquakes, and the 2005 event ruptured one of such asperities, although the previous 1978 event ruptured all 

the asperities at one time. 

 

1. Introduction 
A magnitude 7.2 interplate earthquake occurred at 11:46 on August 16, 2005 at a depth of approximately 40 

km in the Miyagi-Oki region (offshore of Miyagi Prefecture), northeastern Japan. A maximum seismic 

intensity of just under 6 in JMA scale was observed in Kawasaki, Miyagi Prefecture, where considerable 
damage was reported, including 91 people injured and 1 house completely destroyed (according to the Fire and 

Disaster Management Agency, Ministry of Public Management, Home Affairs, Posts and 
Telecommunications). 

Around the focal area of this event, interplate earthquakes with magnitudes of about 7.5 have repeatedly 
occurred at average intervals of approximately 37 years (Headquarters for Earthquake Research Promotion, 

2001). The last Miyagi-Oki earthquake (M7.4) occurred on June 12, 1978, and caused major loss of life (28 
deaths) and 1325 people injured. In recent years, a magnitude 7.1 intraslab earthquake occurred nearby on May 

26, 2003 (Okada and Hasegawa, 2003). On July 26 of that same year, another magnitude 6.4 inland shallow 

crustal earthquake occurred (Okada et al., 2003; Umino et al., 2003), attracting considerable attention. Recent 
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investigation on interplate earthquakes suggest the existence of asperities along the plate boundary east off 
northeastern Japan (Nagai et al., 2001; Okada et al., 2003; Yamanaka and Kikuchi, 2004; Igarashi et al., 2003; 

Matsuzawa et al., 2004; Uchida et al., 2005; Hasegawa et al., 2005). Back slip inversions of GPS data have 
shown that large back slip is distributed in the source area of the Miyagi-Oki earthquake (Suwa et al., 2004). 

Hasegawa et al. (2004) suggested that the July 26 M6.4 earthquake was due to the strong coupling in the 
asperity region of the Miyagi-Oki earthquakes, which causes compressive stress in the layer in which the July 

earthquake occurred. Thus, in recent years, scientists have come to believe that the plate boundary at the 
Miyagi-Oki earthquake asperities is strongly coupled. 

Clarification of the relationship between this latest earthquake and the last Miyagi-Oki Earthquake, which 
occurred more than 27 years previous, is important in improving the modeling of Miyagi-Oki earthquakes, and 

therefore in disaster prevention. In the present paper, the rupture area in the 2005 Miyagi-Oki earthquake is 

estimated from the slip distribution determined by seismic waveform inversion of Yagi et al. (2004). Then, by 

comparison with the slip distribution of the Miyagi-Oki earthquake (Seno et al., 1980; Yamanaka and Kikuchi, 

2004), the relationship between the 2005 Miyagi-Oki earthquake and the 1978 Miyagi-Oki earthquake is 

discussed. 
 

2. Method 
The waveform inversion method of Yagi et al. (2004) was used in the analysis. This method involves joint 

inversion of teleseismic body wave records and regional strong motion records. The former is suitable for 

determining the approximate extent of the rupture area, while the latter is suitable for determining the detailed 

rupture process. Use of the two sets of data provides the advantages of both in the analysis results. 
In this research, the analysis was carried out in two stages. First, the existence of a broad (135 km×135 km) 

fault plane was assumed and the approximate rupture area was estimated by the waveform inversion of 

teleseismic body wave records. Next, to attempt a more detailed estimation of the rupture area, the assumed 

extent of the fault plane was reduced to 90 km×90 km, and joint inversion of resional strong motion records 

and teleseismic body wave records was performed. The assumed fault plane was divided into 9×9 small faults. 

 

3. Data 
Waveform data used in the analysis were obtained as follows. Teleseismic body wave records were those 

recorded by the Incorporated Research Institutions for Seismology (IRIS) at 24 broadband seismograph 

observation stations (Fig. 1(a)), and regional strong motion records were obtained at 3 basement strong motion 
observation stations of KiK-net, which is operated by the National Research Institute of Earth Science and 

Disaster Prevention. Data from an observation station of the Miyagi Prefecture Seismic Observation Network 

were also used (Fig. 1(b)). A 0.01–1.0 Hz bandpass filter was applied to the teleseismic body wave records, and 

a 0.1–0.5 Hz bandpass filter was applied to the regional strong motion records. Both records were converted to 

5 Hz sampling displacement waveforms. 
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The epicentral location adopted, 38.144°N, 144.299°E, was that determined by Hi-net of the National Research 
Institute of Earth Science and Disaster Prevention. The depth of the hypocenter was taken to be 37 km, which 

was determined by using OBS data (Yamamoto et al., 2005; Hino et al., 2005). 
For the geometrical parameters of the fault model, the AQUA-CMT values of the National Research Institute 

of Earth Science and Disaster Prevention were used: strike 198.2°, dip 22.2°. The assumed seismic velocity 
structure model is given in Table 1. 

 

4. Results 

4.1 Results assuming a broad fault plane 
The seismic moments obtained are Mo = 8.8×1019 Nm and Mw = 7.2. The estimated slip distribution is shown 

in Fig. 2. The maximum slip is about 0.70 m, which occurred near the point where the main shock rupture 

initiated. The region of large slip during the earthquake extends in the direction of dip toward greater depth (the 

west side). The process by which rupture progresses in the direction of dip toward greater depth (particularly 

4–8 s after the onset of rupture) can also be seen in the depiction of the rupture process in Fig. 3. The rupture 

stopped 12 s after the onset and then appears to have reactivated in the 13–15 s interval. This is seen on both 

sides of the strike. It is possible that this is due to deviation of the actual seismic velocity structure from the 

assumed structure model. The slip amount of this second portion of the rupture was also relatively small, only 

0.23 m, which may not be important in reproduction of the overall rupture process. Accordingly, this delayed 

rupture is not discussed in the present paper. 
A comparison of the theoretical waveform and the observed waveform is shown in Fig. 4. It is seen that the two 

agree reasonably well. 

4.2 Results assuming a smaller fault surface 
The obtained seismic moments are Mo = 8.9×1019 N m and Mw = 7.2. The distribution of slippage and a 

comparison between the theoretical waveforms and the observed waveforms are shown in Figs. 5 (a) and (b). 

Since this result is a result of joint inversion, the results for the 4 near strong motion observation stations are 
also shown. The slip distributions when the Moho thickness in the velocity structure model is varied are shown 

in Figs. 5 (c) and (d). In all of the slip distributions, relatively large slip occurs at the corners of the assumed 

fault plane. However, in Fig. 2, which shows an overall view of the rupture region, significant amounts of slip 

are not seen in these regions. For this reason, the slip around the hypocentral region that could not be 

reproduced is considered to have been pushed to the corners of the fault surface. This may be related to the 

assumed velocity structure model as in the case shown in section 4.1. 
 

5. Discussion 

5.1 Analysis assuming a broad fault plane 
The final slip distribution in Fig. 2 and the rupture process shown in Fig. 3 suggest that following the main 

rupture in the vicinity of the hypocenter, rupture proceeded along the dip direction to greater depth. This 
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implies that the rupture proceeded toward the west, which can be seen from the directional dependence of the 
original observed waveforms. For example, looking at the comparison between the theoretical waveforms and 

the observed waveforms in Fig. 4, at observation stations east and west of the hypocenter, the rise of the 
waveform of P wave differs in that the rise is sharp and spiked at the western observation stations, and gradual 

and angled at the east observation stations. The overall appearance of the waveforms depends greatly on the 
direction of the observation stations. It is therefore believed that the difference in waveforms is due to the 

directivity. From the fact that the waveform at the western observation stations is spiked, it can be said that the 
propagation of rupture toward the west is natural given the directional dependence of the waveform. 

5.2 Analysis assuming a smaller fault plane 
The slip distribution indicates that after the large slip in the vicinity of the hypocenter, rupture propagated in 

the direction of dip to greater depth (toward the west). Comparison with Figs. 5 (c) and (d) reveals that when 

the Moho is set deeper, the details of the slip distribution change. Thus, the slip distribution appears to be 

affected by variations in the velocity structure. However, the distributions have two features in common: the 

principal rupture occurs in the vicinity of the hypocenter, and the rupture propagates to the west. These features 

are also similar to those obtained from the results of analysis using only the teleseismic waveforms. 
In the present inversion, the observed waveforms were not weighted equally. The east-west component in 

Tsuyama (TUYAM_ EW) was weighted less because when uniform weights were used, the waveform at the 

western observation stations could not be reproduced well. In manual adjustment to reproduce the spiked rise 

that played an important role in section 5.1, it was found that the problem was solved by decreasing the weight 

of the east-west component in Tsuyama. This is probably caused by a difference between the velocity structure 

in the vicinity of the Tsuyama observation station and that used in the present analysis. 

5.3 Comparison with the 1978 M7.4 Miyagi-Oki earthquake 
The relationship of the present earthquake to the 1978 Miyagi-Oki earthquake is discussed by comparing the 

results obtained from the analyses of the two earthquakes. Figures 6 (a) and (b) superimposes the slip 

distributions for the 1978 Miyagi-Oki earthquake (Yamanaka and Kikuchi, 2004) with those for the 2005 

Miyagi-Oki earthquake and the respective aftershock distributions (Okada et al., 2005). Since the slip 

distribution for the 2005 event was obtained referring to the results of both the teleseismic waveform inversion 
and the joint inversion, the results are shown in two figures (Figs. 6 (a) and (b)). Normally, the joint inversion 

result (Fig. 6 (b)) would be used by itself as the final solution, but since it is very sensitive to changes in the 
velocity structure model, it is difficult to determine a unique solution. For this reason, both solutions are 

discussed. 
Comparing the respective aftershock distributions for the 1978 and 2005 Miyagi-Oki earthquakes, it is seen that 

aftershocks of the 2005 earthquake occurred on the south-southeast side of the aftershock area of the 1978 

Miyagi-Oki earthquake (Okada et al., 2005). Practically no aftershocks occurred southeast of the hypocenter, 

while the activity north of the hypocenter in this latest earthquake is lower than that in the 1978 Miyagi-Oki 
earthquake. Thus, aftershocks are mainly distributed west of the hypocenter; the characteristics of the 
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aftershock distribution suggest that rupture propagated toward the west during the main shock. 
As a result of analysis of the 2005 Miyagi-Oki earthquake, when either using the teleseismic waveforms alone 

or in tandem with the regional seismic waveforms, the slip distribution shows that after the principal rupture 
occurred in the vicinity of the hypocenter, rupture progressed toward the west. Based on the above discussion 

of the aftershock distribution, this can be said to be a natural result. Further, from Fig. 6, which compares the 
slip distributions for the 1978 Miyagi-Oki and 2005 earthquakes, it can be seen that the rupture area for the 

latest earthquake occurs in the same region as that for the 1978 Miyagi-Oki earthquake. Both the results 
obtained using the teleseismic waveforms and those using both the teleseismic waveforms and the regional 

seismic waveforms reveal large slip in the southeastern part of the 1978 rupture area, and expansion of the 
rupture toward the west. In the case of the joint inversion, the expansion toward the west is more pronounced. 

Thus, the rupture area of the 2005 earthquake is characterized by occurrence of the principal rupture in the 

southeastern part of the rupture area during the 1978 Miyagi-Oki earthquake and the subsequent westward 

progression of the rupture. 
Seno et al. (1980) have estimated the rupture area of the 1978 Miyagi-Oki earthquake, and the result is shown 

in Figs. 6 (c) and (d). Comparison with the result by Yamanaka and Kikuchi (2004) shown in Figs. 6 (a) and (b) 

shows that both sets of results include 2 or 3 asperities or sub-faults in the northeastern and southwestern parts 

of the region. In both cases, these asperities are distributed north and west of the 2005 hypocenter. In both cases 

of Fig. 6, it seems that the large and small asperities indicated in the previous reports were not ruptured in the 

2005 earthquake. However, it is believed that the 1978 rupture took place around the periphery of the 2005 

earthquake. In particular, Seno et al. (1980) believed that there existed sub-faults with large slip amount in the 

vicinity of the 1978 hypocenter and in and around the 2005 earthquake rupture area. It is possible that the 2005 

earthquake ruptured some of the same small asperities that had been ruptured by the 1978 earthquake. From 

research conducted thus far it appears that there is little possibility that rupture propagated northward from the 

hypocenter. Accordingly, within the rupture area of the 1978 Miyagi-Oki earthquake there must be asperities 

extending to the north that have yet to rupture. 
 

6. Conclusions 
The slip distribution for the 2005 Miyagi-Oki earthquake (August 16) was determined. The results indicate that 

the rupture process consisted of a main rupture in the vicinity of the hypocenter, followed by propagation of the 

rupture toward the west. This is compatible with the directivity seen in the teleseismic waveforms and the 

spread of the aftershock distribution. 
Comparison with the slip distribution for the 1978 Miyagi-Oki earthquake revealed that the 2005 earthquake 

ruptured part of the rupture area of the 1978 Miyagi-Oki earthquake (particularly the southeastern part), but 

most of the asperities of the 1978 earthquake are not considered to have ruptured in the subsequent event. This 

suggests that the Miyagi-Oki earthquakes have been caused by several asperities rather than one large asperity. 
That is, several of these asperities ruptured simultaneously in the 1978 Miyagi-Oki Earthquake, but it is 
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believed that in this latest earthquake only part of that region was ruptured. Thus, it is possible that a series of 
several Miyagi-Oki earthquakes will occur, as pointed out by Umino et al. (2005) for the 1933, 1936 and 1937 

earthquakes. Consequently, in order to construct a model of Miyagi-Oki earthquakes, it is perhaps necessary to 
identify a group of asperities in which Miyagi-Oki earthquakes occur and then consider the possibility of 

successive rupture. 
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Table 1. Seismic velocity structure model 
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Fig. 1：Distribution of observation stations (triangles) for which records were used in the analysis. The star 

shows the epicenter of the main shock. (a) Observation stations used to obtain the teleseismic body wave 

records. (b) Observation stations used to obtain the regional strong motion records. 
 

 

 

 
Fig. 2：Final slip distribution. The star represents hypocenter of the mainshock, and slip vectors are shown with 

arrows. The dotted frame denotes the domain used in the joint inversion of the teleseismic waveforms and the 

regional seismic waveforms (Section 4.2; Fig. 5). 
 

 13 



 

Fig. 3：Evolution of rupture. Slip is shown at 1 s intervals (rupture starts from the upper left figure). Color scale 

is 1/3 of that in Fig. 2. Purple contours denote results for the final slip distribution. 
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Fig. 4：Comparison of theoretical waveforms (red lines) with observed waveforms (black lines). Waveforms 

shown within the solid and wavy frames are the waveforms at the principal eastern observation stations and the 

principal western observation stations (discussed in Section 5). 
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Fig. 5：Results of joint inversion analysis. (a) Final slip distribution (Moho at 23 km). (b) Comparison of 

theoretical waveforms and observed waveforms. Results for regional observation stations are shown above; 

results for teleseismic observation stations are shown below. (c,d) Final slip distributions for Moho depth of (c) 

24 km and (d) 27 km. 
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Fig. 6：Comparison of 2005 Miyagi-Oki earthquake (blue lines, slip distribution; blue circles, aftershock (2 

days) epicenters) with the 1978 Miyagi-Oki Earthquake (red crosses, aftershock epicenters). The slip 

distribution contour interval is 0.3 m. Aftershock distribution was redetermined hypocenters by the DD method 
(Okada et al., 2005). (a,b) Comparison with the slip distribution (red lines) of Yamanake and Kikuchi (2004). 

(c,d) Comparison with the results of Seno et al. (1980); It is believed that large slip occurred in the areas 

denoted by rectangles. Teleseismic waveform inversion results are shown in (a) and (c), and joint inversion 

results are shown in (b) and (d). 
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